无人管理的水下车辆(UUV)是水下勘探和维护的关键。自动驾驶水下车辆(AUV),其潜力减少了运营时间和环境影响,这使人们增加了兴趣。但是,他们面临着重要的技术挑战,尤其是在电源方面。这项研究重点是用于连续AUV操作的电感无线功率传递(IWPT),采用紧密耦合的分裂核心变压器(SCT),设计用于近场功率传递。提出了稳健的隔离和对准机制来克服海水环境的影响。具有SCT和RESONANT LLC电路的IWPT设备进行模拟并实验测试。有限元方法研究突出了将设备与海水环境隔离,尤其是在高频时的优势。LLC仿真和实验结果表明,电力传输的效率分别为93.2%和87.1%,最高为312W。但是,实验设备的全球效率下降到76.4%,突显了对电路设计优化的需求。
摘要抗共振纤维(ARF)表面等离子体共振(SPR)双参数传感器设计用于同时检测磁场和温度。传感器中纤维芯的两侧分别充满金纳米线和金介质,以激发SPR。ARF中的中心气孔充满了对磁场和温度响应的磁性液体(MF),并且通过将聚二甲基硅氧烷(PDMS)放在金纳米线外面来进行温度测量。通过有限元方法进行分析显示,当磁场在50至130 OE之间时,最大的第一和第二共振峰敏感性分别为300 pm/ oe和500 pm/ oe。在20–30°C的温度范围内,第二共振峰的最大波长灵敏度为10.8 nm/°C。通过构建和解调传感矩阵,克服了由于磁氢光光学效应而引起的温度交叉敏化。在工业自动化,军事应用和地质探索等领域,这种新的传感器设计非常有前途。
摘要:纳米级机械谐振器引起了信号处理,传感器和量子应用的广泛关注。纳米结构中超高Q声腔的最新进展允许与各种物理系统和高级功能设备进行牢固的相互作用。那些声学腔对外部扰动高度敏感,由于这些响应是由几何和材料确定的,因此很难控制这些共振特性。在本文中,我们通过在光力学系统中混合高阶Lorentzian响应来演示一种新型的声学共振调节方法。使用弱耦合的语音晶体声腔,我们实现了二阶和三阶洛伦兹响应的连贯混合,这能够具有与设备的声学耗散率相当的共振范围的带宽和峰值频率的微调和峰值频率。这种新颖的共振调节方法可以广泛应用于洛伦兹响应系统和光学机械,尤其是针对环境波动和制造误差的主动补偿。关键字:光子综合电路,硅光子学,声学效应,片上布里群散射,光学机械
频率梳子具有10-20 GHz的模式间距对于越来越重要的应用至关重要,例如天文光谱仪校准,高速双重击向光谱和低噪声微波生成。虽然电磁调节器和微孔子可以以这种重复速率提供窄带梳子来源,但剩余的挑战是产生具有足够峰值功率的脉冲来启动非线性超脑抗脑电图的一种手段,该脉冲跨越了数百个Terahertz(THZ)(THZ)。在这里,我们使用现成的偏振化放大和非线性纤维组件为此问题提供了简单,坚固且通用的解决方案。使用1550 nm的谐振电频率梳子证明了这种非线性时间压缩和超脑部生成的光纤方法。我们以20 GHz的重复速率显示了如何轻易实现短于60 fs的脉冲。可以将相同的技术应用于10 GHz的皮秒脉冲,以表现出9倍的时间压缩,并实现50 fs脉冲,峰值功率为5.5 kW。这些压缩的脉冲通过多段分散量的异常 - 非线性纤维或tantala波导,可以在传播后跨越超过600 nm的平坦超脑生成。相同的10 GHz源可以很容易地获得八度跨度的光谱,以在分散工程二氮化硅波导中自我引用。这种简单的全纤维方法用于非线性光谱扩展填补了将任何窄带10–20 GHz频率梳子转换为宽带光谱的关键空白,用于从高脉冲率中受益并需要访问单个梳子模式的广泛应用。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
介电微球内的光能流通常与光波矢量同向。同时,如果微球中的光场与高质量空间本征模式(回音壁模式 - WGM)之一共振,则阴影半球中会出现反向能量流区域。由于增加了光学捕获潜力,该区域具有相当大的实际意义。在本文中,我们考虑了一个沿粒子直径制造的带有充气单针孔的穿孔微球,并对纳米结构微球中 WGM 激发的特性进行了数值分析。针孔隔离了共振模式的能量回流区域,并将穿孔微球变成了高效的光镊。据我们所知,这是第一次揭示 WGM 共振时针孔中回流强度的多次增强,并讨论了其操纵方式。
非共振衰减率 𝛾 由几个因素决定。原子可以在与腔模式不一致的方向上发射共振频率的光子,或者它可以衰减到其他能级,发射与腔不共振的不同频率的光子,或者电子可以衰减而不发射光子。参数 𝛾 和 𝜅 都决定了腔损耗。这些损耗导致在实验中测量阻尼真空 Rabi 振荡,与代表理想两能级系统的图 4 不同。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的恢复与破缺完美地体现在共振参数和密度分布随势深的演变中:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
声子的探测对于研究共振耦合的磁振子与声子的相互转化至关重要。本文我们报道了通过微聚焦布里渊光散射在 Ni/LiNbO 3 混合异质结构上直接可视化磁振子和声子的共振耦合。表面声子的静态图样源于入射波 𝜓 0 (𝐴 0 , 𝒌, 𝜑 0 ) 与反射波 𝜓 1 (𝐴 1 , −𝒌, 𝜑 1 ) 之间的干涉,由于磁振子-声子耦合,磁场可以调制表面声子的静态图样。通过分析从布里渊光谱中获得的声子信息,可以确定磁振子系统(Ni 薄膜)的性质,例如铁磁共振场和共振线宽。该结果提供了关于耦合磁振子-声子系统中声子操控和检测的空间分辨信息。