摘要:二维有机-无机卤化铅钙钛矿由于其光电特性(例如高太阳能转换效率和可见光区域可调的直接带隙)而引起人们的极大兴趣。然而,二维晶体结构中缺陷态的存在会影响这些特性,导致其带隙发射发生变化以及出现非线性光学现象。在这里,我们研究了缺陷态的存在对二维混合钙钛矿 (BA) 2 (MA) 2 Pb 3 Br 10 的非线性光学现象的影响。当两个脉冲(一个以 800nm 为中心的窄带泵浦脉冲和一个带宽为 800-1100nm 的超连续脉冲)入射到钙钛矿薄片上时,会发生简并四波混频 (FWM),其峰值对应于晶体中存在的缺陷态的能级。与非共振 FWM 过程中发生的虚拟跃迁相比,缺陷态的载流子寿命更长,这使得更多的电子能够被第二个泵浦光子激发,从而导致缺陷能级的 FWM 信号增强。随着薄片厚度的增加,双光子发光的猝灭现象也得到了观察,这归因于厚度较大时薄片内缺陷的存在增加。该技术展示了使用 FWM 检测晶体中缺陷能级的潜力,可用于各种光电应用。关键词:钙钛矿、非线性光学、材料、缺陷、荧光 ■ 简介
电子-分子碰撞过程指的是分子捕获低能电子(即能量高达 ∼ 20 eV)形成短暂、不稳定的分子阴离子,然后解离成几个碎片(一个负离子,其他都是中性),这是一个长期研究的过程,称为解离电子附着(DEA)。DEA 是基于电子-分子碰撞的基本相互作用之一 [1-8],在凝聚态物质 [9-12]、气态电子 [13] 到低能等离子体 [14] 等多个领域中发挥着重要作用。自然环境中 DEA 与分子相关的低能电子通常是物质与高能光子或粒子之间初级相互作用的副产物。研究表明,这些电子在生物过程中起着关键作用,例如引发 DNA 链断裂和其他 DNA 解离过程 [ 15 – 18 ] 以及蛋白质的辐射损伤 [ 19 ]。甲酰胺 (HCONH 2 ) 被广泛认为是研究蛋白质和肽化学的原型模型分子,因为它具有简单而丰富的结构,其中包括一个酰胺键。甲酰胺分解成其他值得注意的简单有机分子(例如 CH、HCN、HCNO 等)已在实验和理论环境中得到广泛研究。甲酰胺由许多复杂生物分子(如蛋白质和核酸)的祖先组成,被认为是简单生物分子进化为复杂结构的重要环节。此外,甲酰胺由于其 NC 酰胺键而引起了广泛关注。这一特征使甲酰胺成为研究电子捕获的典型分子
化学问题,需要对复矩阵进行对角化。例如,量子散射共振的计算可以表述为复特征值问题,其中特征值的实部是共振能量,虚部与共振宽度成正比。在目前的研究中,我们将 QAE 推广到处理复矩阵:首先是复 Hermitian 矩阵,然后是复对称矩阵。然后使用这些推广来计算 O + O 碰撞的一维模型势中的量子散射共振态。这些计算是使用软件(经典)退火器和硬件退火器(D-Wave 2000Q)执行的。复 QAE 的结果也与标准线性代数库(LAPACK)进行了对比。这项工作提出了量子退火器上任何类型的复特征值问题的第一个数值解,也是任何量子设备上量子散射共振的首次处理。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
功能共振分析方法 (FRAM) 是一种基于系统的方法,用于理解高度复杂的社会技术系统。除了从安全事件或不良状态中学习之外,FRAM 还可用于通过识别“想象中的工作”(WAI) 和“实际工作”(WAD) 之间的差距来了解系统中的运行情况。FRAM 在许多领域中的应用越来越广泛,可以增强我们对复杂系统的理解,并提出改进工作设计的策略。这项系统评价确定了 2006 年至 2019 年的 108 篇 FRAM 研究论文。这些论文大部分由欧洲研究人员撰写,采用定性方法,例如文档分析、访谈、与主题专家 (SME) 的焦点小组和观察来开发 WAI 和 WAD。尽管航空业被用于医疗保健、建筑和海事等领域,但航空业是 FRAM 研究中最常探索的领域。26 项航空业 FRAM 研究探讨了航空业的许多方面,包括空中交通管制 (ATC) 系统、驾驶舱操作、地面处理、维护以及一系列过去的安全事故,例如跑道入侵。本文还从构建 FRAM 的常用方法和步骤以及构建 FRAM 网络的可用软件工具的角度描述了专注于航空业的 FRAM 研究。当前的 FRAM 展示了其在捕捉复杂系统的动态和非线性特性方面的优势,并有助于我们理解和持续改进复杂系统。然而,FRAM 的使用和解释存在一些关键问题,例如方法的一致性以及数据收集方法的复杂性和可靠性,研究人员和行业中的 FRAM 用户应考虑这些问题。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2023 年 7 月 15 日发布。;https://doi.org/10.1101/2023.07.15.549169 doi:bioRxiv preprint
摘要 P-糖蛋白(P-gp)在癌细胞中高表达可导致多药耐药(MDR),抗癌药物与P-gp抑制剂联用是逆转癌症MDR治疗的一种有前途的策略。本研究建立了一种无标记、无洗涤剂的系统,结合表面等离子体共振(SPR)生物传感器和苯乙烯马来酸(SMA)聚合物膜蛋白(MPs)稳定技术来筛选潜在的P-gp抑制剂。首先,利用SMA聚合物从MCF-7/ADR细胞中提取P-gp,形成SMA脂质体(SMALPs)。随后,将SMALPs固定在SPR生物传感器芯片上,建立P-gp抑制剂筛选系统,并测定P-gp与小分子配体的亲和力。方法学考察证明该筛选系统具有良好的特异性和稳定性。从50个天然产物中筛选出9个P-gp配体,并测定了它们与P-gp的亲和常数。体外细胞验证实验表明,粉防己碱、防己诺林碱、前花素B、新黄芩素和淫羊藿苷可以显著增加MCF-7 / ADR细胞对阿霉素(Adr)的敏感性。此外,粉防己碱、前花素B和新黄芩素可以通过抑制P-gp的功能来逆转MCF-7 / ADR细胞的MDR。这是首次将基于SMALPs的稳定化策略应用于SPR分析体系。SMA聚合物可以将P-gp保留在天然脂质双层环境中,从而保持P-gp的正确构象和生理功能。所开发的系统可以快速
根据图中所示的数据分析4,计算模式tm 0的横向磁场,用于周围的介质折射率等于1在波长450、510、570和630 nm处,涵盖了LMR位于不同中间层厚度值的范围:0,150,150,150,150,350,350,350,550,700,700,850和1000 nm nms1)。对于模拟,我们使用了带有准2D版本的FimMave软件中实现的有限差异方法(FDM)。,由于它在接口上是连续的,因此比电场更容易解释,因此我们专注于横向磁场的分析。
摘要 首次在高压、低温条件下表征了选择性双光子吸收共振飞秒激光电子激发标记 (STARFLEET) 测速技术。研究在美国宇航局兰利研究中心的 0.3 米跨音速低温风洞中进行,流动条件涵盖了该设施的整个运行范围;总压力范围从 100 kPa 到 517 kPa,总温度从 80 K 到 327 K,马赫数从 0.2 到 0.85。检查了 STARFLEET 信号强度和寿命测量的热力学依赖性,因为强度和寿命都会影响测量精度。发现信号强度与密度成反比,而寿命与密度几乎成线性关系,直到接近氮的液汽饱和点。速度测量的准确度和精度是在整个条件范围内评估的,标准误差确定为 1.6%,而精度范围约为自由流速度的 1.5% 至 10%。还观察到精度具有温度依赖性,这可能是由于在较高密度下寿命较长所致。
磁共振成像(MRI)广泛用于临床护理和医学研究中。测量效应的参数中的信噪比(SNR)确定图像的诊断值,例如空间分辨率,对比度和扫描时间。手术植入的射频线圈可以增加随后对相邻组织的MRI研究的SNR。SNR中所产生的好处是通过与手术去除这些线圈或将它们永久性地将其保持在原位的显着风险来平衡的。作为替代方案,作者在这里报告了完全由可生物吸收的有机和无机材料制成的可植入式电感 - 电容器电路的类别。对电感器和电容器设计的工程选择提供了选择设备的谐振频率以满足MRI规范的能力(例如,在4.7 T MRI时为200 MHz)。此类设备可增强SNR并提高相关的成像功能。这些简单的小生物电子系统在生理条件下在临床相关的时间范围内(最多1个月)的功能,然后通过生物吸附的自然机制完全消失,从而消除了对手术提取的需求。在神经幻影和人尸体中的成像演示表明,这项技术具有对手术后监测/评估恢复过程的广泛潜力。