。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
图1:来自临床数据仓库和Correponding标签的T1W脑图像的示例。a1:质量高的图像(第1层),没有gadolinium; A2:质量高(第1层),带有Gadolinium; B1:中等质量(第2层),没有Gadolinium(噪声1级); B2:中等质量(第2层),带有Gadolinium(对比1级); C1:不良质量(第3层),没有gadolinium(对比2级,运动2级); C2:不良质量(第3层),gadolinium(对比2级,运动级1级); D1:笔直排斥(分段); D2:直接拒绝(裁剪)。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳的机会。磁共振图像 (MRI) 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 被这些伪影破坏,可能无法使用。由于扫描次数太多,无法手动检测它们,因此有必要开发工具来自动排除(或至少识别)带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种从研究到临床数据的新型迁移学习方法,用于自动检测 3D T1 加权脑 MRI 中的运动。该方法包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,以将我们的预训练模型推广到临床数据,这依赖于 4045 张图像的标记。目标是 (1) 能够排除具有剧烈运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80 %)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
摘要 医学界高度关注的领域之一是从脑磁共振成像 (MRI) 中分割肿瘤。早期诊断恶性肿瘤对于为患者提供治疗是必要的。如果及早发现,患者的预后将会改善。医学专家在诊断脑肿瘤时使用手动分割方法。本研究提出了一种简化和自动化该过程的新方法。在最近的研究中,多级分割已广泛应用于医学图像分析,分割方法的有效性和精度与使用的分割数量直接相关。然而,选择合适的分割数量通常由用户决定,并且对于许多分割算法来说都是具有挑战性的。所提出的方法是基于 3D 直方图的分割方法的修改版本,该方法可以自动确定合适的分割数量。一般算法包含三个主要步骤:第一步是使用高斯滤波器平滑图像的 3D RGB 直方图。这样可以消除过于接近的不可靠和非主导直方图峰值。接下来,多峰粒子群优化方法识别直方图的峰值。最后,根据非欧几里得距离将像素放置在最符合其特征的聚类中。所提出的算法已经应用于癌症成像档案 (TCIA) 和脑 MRI 图像的脑肿瘤检测数据集。将所提出方法的结果与三种聚类方法的结果进行了比较:FCM、FCM_FWCW 和 FCM_FW。在对各种 MRI 切片进行这三种算法的比较分析中。我们的算法始终表现出卓越的性能。它在这三个指标中都获得了最高平均排名,表明了其在聚类中的稳健性和有效性。所提出的方法在实验中是有效的,证明了它能够找到适当的聚类。
1九个Eylul大学,医学院,皮肤科,伊兹密尔,土耳其2 Dokuz Eylul大学,医学院,心脏病学系,IZMIR,土耳其3号私人健康医疗学,皮肤病学诊所,Izmir,Izmir,Izmir,Turkey Orcid:f.gg。 0000-0002-7550-6052,Ö.ö。0000-0001-7190-3969,A.T。 0000-0003-2753-3432,M.B.Y。0000-0002-8169-8628,E.E.C。0000-0003-3129-0269通讯作者:Fatmagülbaşaran电子邮件:dratmagulbasaran@gmail.com收到:20.10.2023;接受:12.12.2023;可用在线日期:31.01.2024©版权所有2021,DokuzEylül大学,卫生科学研究所 - 在线可用,网址为https://dergipark.org.tr/en/pub/jbachs,引用此文章为:çalıkoğluEEE。心力衰竭患者的指甲毛细管发现。J Basic Clin Health Sci 2024; 8:206-211。
可以根据导致几个严重环境问题的各种因素观察到温度升高,尤其是全球变暖。城市地区是该温度升高最大的位置。城市热浓度,即所谓的热岛效应,在结构区域很高。这种情况导致人类的生命受到不利影响。因此,需要持续的测量和分析来评估城市地区的室外热舒适性和热应力。今天,无人驾驶飞机(UAV)系统被用作地球观察活动中的快速数据生产技术。集成到无人机系统中的热摄像机可以精确,不断地监测城市地区的温度值。本研究的重点是由于表面温度变量的快速响应,因此在局部规模上的无人机热摄像头系统的潜在应用。一个热摄像机无人机系统,用于测量地球表面的能量通量和温度,这是了解景观过程和响应不可或缺的一部分。因此,UAV热传感器直接用于TürkiyeKocaeli University工程大楼的不同土地覆盖类型。衍生的无人机表面温度与同时获得的原位温度测量值进行了比较。使用TFA SCANTEMP 410型号表面温度计获得同时进行陆地温度测量。Pearson与0.94系数之间的相关性利用了无人机表面温度与陆地测量之间的高相关性。可以得出结论,无人机安装的热摄像机系统是一种有前途的工具,它有更多的机会了解高空间和时间分辨率下的表面温度可变性。
对于许多临床应用(包括胎儿成像)而言,大脑分割通常是定量分析大脑的第一步,也是最关键的一步。在磁共振成像 (MRI) 中,胎儿大脑的分割面临不同的挑战,例如由于胎儿在检查过程中的运动而导致的胎儿位置不标准、大脑快速发育以及图像数据有限。近年来,已经提出了几种分割方法,用于自动从 MRI 图像中分割胎儿大脑。这些算法旨在定义具有不同形状和强度的感兴趣区域,涵盖整个大脑或隔离特定结构。深度学习技术,特别是卷积神经网络 (CNN),已成为该领域最先进的方法,因为它们可以在异构数据集上提供可靠的分割结果。在这里,我们回顾了在胎儿大脑分割领域开发的深度学习算法,并根据其目标结构对其进行分类。最后,我们讨论了胎儿领域文献中已知的研究差距,并提出了可能影响胎儿 MRI 图像管理的未来研究方向。
摘要 简介:深部脑刺激 (DBS) 是治疗各种神经和精神疾病的常用方法。最近的研究强调了神经影像学在定位电极触点相对于目标脑区的位置以优化 DBS 编程方面的作用。在不同的成像方法中,术后磁共振成像 (MRI) 已广泛用于 DBS 电极定位;然而,导线引起的几何失真限制了其准确性。在这项工作中,我们调查了导线尖端的实际位置与从 MRI 伪影估计的尖端位置之间的差异在多大程度上取决于 MRI 序列参数(例如采集平面和相位编码方向)以及导线的颅外配置。据此,设计并讨论了一种提高导线定位准确性的成像技术。方法:我们设计并构建了一个拟人化幻影