摘要:如今,放大器是一种功率增益更大的器件。它是现代电子器件的基础,广泛应用于几乎所有电子设备。共源共栅放大器是各种有用电路的关键元件。它具有带宽增加、转换速率高、增益高、输入阻抗适中和输出阻抗较高的优点。循环折叠共源共栅放大器 (RFCA) 的参数比传统折叠放大器 [1] 有所改进。这是通过使用信号路径中空闲设备的先前电路来实现的,从而提高了跨导、增益和转换速率 [1]。共源共栅级由共栅极和共源极端子组成。互补折叠共源共栅放大器 (CFCA) 是镜像配置电路,可节省功率并具有更高的稳定点。转换速率允许最大频率高于范围,从而消除任何潜在错误和不需要的信号。转换速率高于 6.3V/µs 的电路似乎最常用。单位增益带宽可用来放大信号,更宽的带宽可以消除较小的信号。关键词:循环折叠共源共栅 (RFC)、互补折叠共源共栅 (CFC)、折叠共源共栅放大器 (FCA)。
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
备注 1 户口簿摘录(企业为法人的,需提供登记簿核证副本) 1 份 2 企业历史 1 份 3 国防部互助会 国防学院分会 清洁管理委托合同(草稿) 1 份 4协议书(草案) 1份 5 都道府县知事等颁发的营业执照复印件 1份(仅限于需要营业执照等的企业) 6财务报表 1 份 7 纳税证明(个人为《国税通则施行条例》附件第 9 号格式 3-2,法人为
介绍了一种使用简单单级辅助放大器的新型增益提升折叠共源共栅运算放大器。所提出的辅助放大器的设计方式是,无需使用共模反馈网络,即可获得适当的输入和输出直流共模电压。辅助放大器的输入端由耦合电容器和浮栅 MOS 晶体管隔离。因此,直流输入电压电平限制已被消除。辅助放大器的输出端也使用了二极管连接的晶体管,使输出电压电平保持在所需的水平。与更复杂的放大器相比,简单的单级辅助放大器对主放大器施加的极点和零点更少,而且功耗也更低。0.18μm CMOS 技术的仿真结果显示直流增益增强了约 20 dB,而输出摆幅、斜率、稳定时间、相位裕度和增益带宽几乎与之前的折叠共源共栅设计相同。
宽带(多倍频程)LNA 采用各种架构设计,包括分布式(行波)、平衡和电阻反馈配置 [9]。电阻反馈被广泛用于实现多种 LNA 性能(工作频率范围、噪声系数、增益、增益平坦度、线性度、VSWR、功耗)之间的权衡 [9, 10]。在基于电阻反馈的可能配置中,共源共栅 LNA 不仅可以在其工作频带上提供平坦的增益和功率,还可以在同一频带内提供平坦的线性度和更高的输出阻抗(更好的宽带潜力)[11]。因此,本文介绍了基于电阻反馈配置和自偏置技术的单正电源共源共栅 LNA。
�� l, f = Ton - Toff;实验室、现场 fl, f = 热循环频率;循环次数;实验室、现场每天必须至少 6 次 Qc = 芯片功率,W Θ jc = 芯片结至外壳电阻,°C/W Θ jl = 芯片结至引线(即球)电阻,°C/W Θ ja = 芯片结至环境电阻,°C/W 简介 PowerPC 603 和 PowerPC 604 RISC 微处理器 可扩展的 PowerPC™ 微处理器系列(图 1)由 Apple、IBM 和 Motorola 联合开发,被设计用于高性能、高性价比的计算机(包括笔记本电脑、台式机、工作站和服务器)。PowerPC 微处理器系列包括从 PowerPC 601™ 微处理器到 PowerPC 620™ 微处理器。PowerPC 603 微处理器是 PowerPC 精简指令集计算机 (RISC) 架构的低功耗实现。
JCET 徽标是长电科技集团股份有限公司的注册商标。该商标在中华人民共和国注册(注册号:3000529)。此处的所有其他产品名称和其他公司名称仅供识别之用,可能是其各自所有者的商标或注册商标。本手册以及此处的数据表仅供展示之用,长电科技或其子公司不保证或作出任何明示、暗示或法定的准确性、充分性、可靠性、完整性或其他方面的陈述。建议读者在做出任何决定之前,随时寻求专业建议并获得对此处包含的信息的独立验证。长电科技保留随时更改信息的权利,恕不另行通知。©版权所有 2019。长电科技集团股份有限公司。保留所有权利。
基于鳍式场效应晶体管 (FinFET) 的模拟电路正逐渐取代基于金属氧化物半导体场效应晶体管 (MOSFET) 的电路,因为其稳定性和高频操作而变得越来越重要。构成大多数模拟电路子块的比较器是使用运算跨导放大器 (OTA) 设计的。OTA 采用新的设计程序设计,比较器电路是将子电路与 OTA 集成在一起设计的。设计并集成了比较器设计的构建块,例如输入电平转换器、带有共源共栅级的差分对和用于输出摆幅的 AB 类放大器。在反馈路径中使用折叠共源共栅电路来将共模输入值保持为常数,以便差分对放大差分信号。比较器的增益达到 100 dB 以上,相位裕度为 65°,共模抑制比 (CMRR) 高于 70 dB,输出摆幅从轨到轨。该电路提供 5 GHz 的单位增益带宽,适用于高采样率数据转换器电路。
夹片键合 CCPAK-1212:设计下一代 GaN 产品 Serge Karboyan、Ding Yandoc、Barr Licup、Manikant、Sara Martin Horcajo、Stefano Dalcanale、John Denman、Zainul Fiteri、Hagop Tawidian、Manfred Rowe、Sven Zastrau、Adam Brown 和 Bas Verheijen Nexperia,Bramhall Moor Ln,斯托克波特,大曼彻斯特,英国 关键词:GaN、AlGaN、CCPAK1212、夹片键合、封装、产品可靠性。 引言 Nexperia 的商业化 GaN 基功率晶体管在功率器件市场表现出巨大优势,在 650 V 时提供低导通电阻。为了在不同应用(如车载充电器、DC-DC 转换器、牵引逆变器)[1、2] 中实现这种出色性能,Nexperia 推出了一种新型夹片键合封装 HEMT,在高工作电压下具有低关断态漏电。虽然这是 GaN 行业中第一个推出完全夹片键合解决方案而不需要任何引线键合连接的解决方案,但该解决方案的电感比引线封装低 5 倍(2.37 nH 对比近 14 nH),并且封装电阻超低,热阻小于 0.5 K/W [3]。要保持这种性能,需要高水平的器件工程设计,包括 HEMT 设计、MOSFET 设计以及紧凑型 CCPAK 中的共源共栅配置,从而形成具有行业领先性能的创新封装。夹片键合配置用于优化热性能和电气性能,简化的共源共栅可避免使用栅极驱动器。结果与讨论图 1 显示了共源共栅配置中的无引线键合 GaN HEMT 和 Si MOSFET。这些器件位于
本文介绍了通过数字图像相关 (DIC) 技术对球栅阵列 (BGA) 上焊球的热膨胀系数 (CTE) 进行分析的方法。由于微尺度元件对热的敏感性,评估半导体元件的热机械性能是一项主要挑战。然而,BGA 的 CTE 分析对于解决导致故障的热失配应变问题具有重要意义。同时,焊球热膨胀的测量是在微尺度和加热条件下进行的,传统的应变测量方法无效。在本分析中,使用微 DIC 系统测量焊球在加热台上受到温度载荷时的应变值。使用加热台内的热电偶测量焊球的实际温度,以确保温度的均匀性。获得特定温度下测得的应变,并使用线性分析绘制 CTE 图表。测得的焊球的平均 CTE 值为 27.33 × 106 / oC。结果表明,测量结果接近焊球 CTE 的参考值。该分析使用开发的 DIC 方法对 BGA 进行了可靠的分析。