在这项研究中,合成了氧化物 /壳聚糖复合材料的Fe 3 O 4 /氧化二壳含量,以降解亚甲基蓝色染料。使用XRD,SEM-EDS,VSM和UV-VIS DRS Instruments对合成产品进行表征。使用共沉淀方法合成的Fe 3 O 4 /氧化石墨烯 /壳聚糖复合材料导致具有磁性特性的深褐色粉末。XRD表征在2θ= 35,49°时显示衍射峰,晶体尺寸为23,29 nm。SEM-EDS表征显示骨料形态和C(83,20%),O(11,70%),Na(1,00%),N(0,70%)和Fe(2,50%)。VSM表征显示磁化值为25,39 EMU/g。UV-VIS DRS表征表明Fe 3 O 4 /氧化石墨烯 /壳聚糖的带隙值为1,40 eV。
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
将纳米颗粒添加到涂料中是一种广泛采用的策略,可增强树脂性能而不会损害性能。铜氧化物被用作制剂中的添加剂,以取代有机金属,这是由于其杀菌性和防污活性而被禁止的。这项研究的重点是通过在抗小bial涂层中施用的铜(II)氧化物纳米颗粒的合成。合成过程涉及使用硫酸铜(CUSO 4 .5H 2 O)作为前体和NaOH作为碱性剂的共沉淀。的表征。这些分析证实了平均长度约为73 nm和宽度16 nm的CuO纳米棒的形成。对大肠杆菌,金黄色葡萄球菌,铜绿假单胞菌和蜡状芽孢杆菌进行了抗菌测试。结果表明,值得注意的抗菌活性,特别是对金黄色葡萄球菌和蜡状芽孢杆菌的抗菌活性。因此,研究结果表明铜(II)氧化物纳米颗粒具有作为添加剂的潜力,增强了树脂作为涂层和其他应用的杀菌性能。
由于钠资源丰富,开发高性能电极材料对于 SIB 技术的进步至关重要。1 – 11 钠过渡金属氧化物、12 – 15 多聚阴离子化合物 16 – 18 和普鲁士蓝类似物 (PBA) 19 – 28 被广泛研究用作 SIB 的正极材料。PBA 的通式为 Na x M [Fe(CN) 6 ] y $ n H 2 O(M = Mn、Fe、Co、Ni、Cu 等),由于其理论容量高(高达 170 mA hg 1,存储两个 Na +)、成本低、易于合成以及开放的框架结构具有快速 Na + 插入/脱出的优势,而引起了广泛关注。在各种PBA中,亚铁氰化锰钠 NaxMn[Fe(CN)6]y$nH2O(简称PBM)被认为是最有前途的SIBs PBA正极,由于其较高的工作电压和较大的容量,其能量密度较高。29 – 34此外,Mn元素在地球上储量丰富,对环境无害。然而,使用传统合成路线制备的NaxMn[Fe(CN)6]y化合物,即通过Mn2+和[Fe(CN)6]4的简单共沉淀反应
摘要 利用源自农业废弃物的产品作为低成本吸附材料去除有机或无机污染物是理想的选择,因为这些材料在许多国家都很容易获得。这项研究旨在制备由纳米复合材料 OPBA / 膨润土 / TiO 2 制成的环境友好型吸附剂。采用共沉淀法制备 OPBA,在膨润土制备中添加 CTAB 表面活性剂。同时,采用溶胶-凝胶法制造 TiO 2 。通过 XRD、FTIR、SEM 和 BET 进行表征。吸附剂光谱没有显示吸收的显著变化,其中 OH 键变弱是由于膨润土层间存在 TiO 2 造成的。另一种可能性是由于煅烧和加热的影响。H 2 O 中的 OH 基团在层间被羟基化和脱水。 OPBA/TiO 2 /Bentonite复合材料的形成并没有明显改变TiO 2 的结晶性,证明OPBA和Bentonite的加入并没有降低光催化活性,整个样品的形貌为片状结构,且存在孔隙;在Bentonite/TiO 2 中加入OPBA导致样品的比表面积降低。
服用药物的最明智,最安全,最自然的方法是通过嘴。将在本文中介绍用于解决患者合规性,药物释放,吸收和整体功效问题的最新材料和技术。由于其出色的患者合规性,可移植性,稳定性和处理的便利性,因此片剂是最常用的固体口服剂量。随着时间的流逝,片剂技术已取得了长足的进步。这项工作旨在阐明平板电脑赋形剂,生产程序,分析方法以及设计质量的进步。术语“剂型”描述了药物的物理形状,例如固体,液体或气体,可以适当地给予某些身体部门。制造也受益于较短的处理期,尤其是对于平板电脑剂型的共同处理的多功能现成的赋形剂。为增强产品和过程的性能,已经创建了砂油技术的新进步,例如反向湿,热粘附,蒸汽,蒸汽,融化,冻结,泡沫,潮湿和气动干燥肉芽。此外,已经使用了多种粒子工程方法,例如共沉淀,热融化,挤出量化,用于创建强大的片剂配方。
土壤是最大的地面碳储层,是气候变化和对环境健康的相关反馈的核心。矿物质是促成超过60%土壤碳储存的重要组成部分。然而,矿物质与有机碳之间的相互作用如何塑造碳转化和稳定性仍然很少了解。在本文中,我们严格审查有机碳和土壤最小的和相关机制之间的主要相互作用,包括吸附,氧化还原反应,共沉淀,溶出,聚合和催化反应。这些相互作用与多个过程的组合高度复杂,极大地影响了有机碳在以下过程中的稳定性:(1)矿物质 - 有机碳关联的形成或解构; (2)用矿物质对有机碳的氧化转化; (3)有机碳与矿物质的催化聚合; (4)根据矿物转化的有机碳的不同关联稳定性。随后证明了与实际生态环境中与土壤矿物质相互作用期间与碳更换和稳定性有关的几个证据。我们还强调了当前的研究差距和轮廓研究的重点,考虑到其与矿物质的相互作用,这可能会绘制未来的方向,以了解对土壤碳储存能力的更深层次的理解。
摘要双酚在食品和环境系统中广泛保留。少量的双酚A可以直接影响人类健康。然而,双足A的最近比色检测方法仍然符合诸如复杂操作和高盐溶液的影响等挑战,从而导致不准确的检测结果。在此,Ag 3 PO 4纳米颗粒是通过简单的共沉淀方法制备的,并且具有出色的漆酶模拟催化活性。在Ag 3 PO 4纳米颗粒的催化作用下,双酚A失去了电子,并与4-氨基 - 抗吡啶进一步反应形成红色物质。因此,首先基于模仿AG 3 PO 4纳米颗粒的漆酶活性来建立一种新型的双酚的快速比色方法。比色法的检测限制为低至0.222 mg·L -1,该限制低于中国国家卫生和计划生育委员会和美国食品和药物管理局。此外,比色方法对其他竞争目标表现出极好的选择性。进一步的研究证实了比色方法在实际食品和水样品中检测双酚A的准确性,可靠性和速度,这表明这种比色方法在实际应用中可能至关重要。
水污染是影响公众健康和可持续未来的重大问题。迫切需要采用有效的方法净化废水以确保清洁的水供应。大多数废水修复技术严重依赖功能材料,因此成本效益高的材料非常受欢迎。由于具有重大的环境和经济意义,开发用于废水修复的废物衍生材料近年来呈爆炸式增长。本文全面回顾了废物(例如生物废物、电子废物和工业废物)衍生材料在废水净化中的应用。首先总结了将废物转化为功能材料的复杂策略,包括热解和燃烧、水热合成、溶胶-凝胶法、共沉淀和球磨。此外,还讨论了不同设计策略中的关键实验参数。然后,分析了废物衍生功能材料在吸附、光催化降解、电化学处理和高级氧化过程(AOP)中的最新应用。我们主要关注通过调控废弃物衍生材料的内部和外部特性来开发高效的功能材料,并强调材料的性能与性能之间的相关性。最后,强调了废弃物衍生材料驱动的水修复领域未来的关键前景。
北美电动汽车和储能系统预计将呈指数级增长,因此有必要开发强大的锂离子电池组件(尤其是阴极活性材料 (CAM))国内供应链。NOVONIX 开发了一种创新的全干式、零废物阴极合成工艺,该工艺消除了共沉淀步骤,大大减少了用水量、废物和成本。与传统的阴极合成路线相比,该方法简化了生产流程、减少了单元操作并降低了功耗,可将资本支出强度降低 30%,加工成本(不包括原料)降低近 50%。NOVONIX 通过全干式、零废物工艺合成的单晶 LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) 表现出与商业生产的单晶 NMC622 相当的电化学性能。全电池测试表明具有竞争力的放电容量 (Q d )、首次循环效率 (FCE)、气体释放和长期循环稳定性。这些结果表明,全干式、零废弃工艺可生产高品质 NMC CAM,同时具有显著的环境和经济优势。进一步探索和应用该技术到其他阴极化学中,可能在开发可持续且具有成本效益的国内和全球锂离子电池供应链方面发挥关键作用。