图1 RNA干扰:将miRNA基因转录为原代miRNA(pri-miRNA),该基因由Drosha进一步处理以形成前miRNA。Exportin-5将前MIRNA转移到细胞质中,如果将其处理为成熟的miRNA。siRNA可以通过化学合成直接获得,并在载体或化学修饰的帮助下可以通过内吞作用到达细胞质。在细胞质中,成熟miRNA或siRNA的引导(反义)将组装到RNA诱导的沉默复合物(RISC)中。乘客(感官)链将被丢弃。成熟的RISC将通过与引导链配对找到目标mRNA序列。少于7个互补碱(种子区域)足以用于miRNA介导的RNAi,而siRNA诱导的沉默通常需要完全互补性。取决于触发分子(siRNA或miRNA),由于mRNA降解或转移到P体中,靶基因的翻译可能会被抑制。mRNA疗法:一旦通过适当的递送方法引入在细胞质中,经过改良的外源mRNA可以劫持细胞的核糖体,以转化为功能性蛋白质
摘要 - 太阳能发电的预测是一项挑战任务,因为它依赖于表现出空间和时间变化的气候特征。由于数据分布的变化,预测模型的性能可能会在不同的位置各不相同,从而导致一个模型在一个区域中效果很好,但在其他区域则不能。此外,由于全球变暖的结果,天气模式的改变是明显的加速。这种现象引入了随着时间的流逝,即使在同一地理区域内,现有模型的功效也会降低。在本文中,提出了一个域自适应深度学习框架,以使用可以解决上述挑战的天气特征来估算太阳能发电。以监督的方式训练了一个已知位置数据集的馈电深度卷积网络模型,并用于预测以后未知位置的太阳能。这种自适应数据驱动的方法在计算速度,存储效率及其在最先进的非自适应方法失败的情况下改善结果的能力表现出显着的优势。我们的方法已显示出10的改进。47%,7。 44%,5。 分别为加利福尼亚州(CA),佛罗里达州(FL)和纽约(纽约)(纽约)的最佳性能非自适应方法相比,太阳能预测的准确性为11%。 索引术语 - 表现力,深度学习,域适应性,可再生能源47%,7。44%,5。分别为加利福尼亚州(CA),佛罗里达州(FL)和纽约(纽约)(纽约)的最佳性能非自适应方法相比,太阳能预测的准确性为11%。 索引术语 - 表现力,深度学习,域适应性,可再生能源分别为加利福尼亚州(CA),佛罗里达州(FL)和纽约(纽约)(纽约)的最佳性能非自适应方法相比,太阳能预测的准确性为11%。索引术语 - 表现力,深度学习,域适应性,可再生能源
重离子束育种基因组编辑育种大规模筛选菌株的选择,适用于低环境影响培养土地培养物,从单细胞到大藻类选择高蛋白和维生素含量的选择,通过细胞融合
2. 批准议程 提议人:J. Weir 议员 附议人:E. Caputo 议员 决议:理事会在此接受 2025 年 2 月 11 日星期二的议程及其所提出的任何附录。 3. 披露经济利益 4. 前次会议记录: 提议人:M. Christenson 议员 附议人:T. Trutenko 议员 决议:理事会在此接受 2025 年 1 月 14 日理事会例会会议记录和 2025 年 2 月 4 日特别会议记录及其所提出的任何附录。 5. 未列入议程的会议记录中出现的问题和信息 6. 请愿和/或代表团 7. 工作人员报告 a) 火灾报告 – 2025 年 1 月 提议人:J. Weir 议员 附议人:E. Caputo 议员
我们在开发和资助旨在帮助那些儿童罹患致命疾病且服务供应不稳定的社区家庭的项目方面取得了巨大成功。通过我们的活动,我们影响并参与了英国政府、NHS 机构和医疗服务提供者组织为改善护理和支持所做的重要工作。我们每天都在与需要情感、经济和实际支持的家庭交谈,并帮助他们找到支持。
软机器人利用合规的材料以灵活的方式与复杂和不确定的环境相互作用,从而可以操纵脆弱的物体并与生物的安全相互作用。它们的适应性推动了医学和制造等领域的创新。设计软机器人即使对于经验丰富的设计师,由于其非线性材料,多物理耦合,多个身体与环境之间的复杂相互作用及其许多自由度,即使对于经验丰富的设计师来说也很具有挑战性。这解释了为什么软机器人技术中的第一批设计受到自然的启发,模仿了诸如蠕虫或章鱼之类的软动物。软体能够符合硬对象并重新配置DI FF任务,然后将控制的重要部分委派给身体。与刚性机器人不同,体现的智能仍然是软机器人技术中的新兴话题。但是,很明显,可以很好地适应其环境的代理商可以快速学习智能行为。本文摆脱了传统的训练控制和敏捷性的关注,旨在通过将人工智能与软机器人设计联系起来来应对控制挑战。软机器人技术领域在建模,控制和设计方面提出了许多挑战。Inria Lille的除霜团队已经开发了几种有限元方法(FEM)的工具来应对这些挑战,从而可以准确地模拟软机器人。这些工具已用于低级控制,并在制造前评估了软机器人设计。此探索需要解决一些挑战。在这项工作中,应用了各种基于FEM的仿真和数值优化工具来探索软机器人的计算设计。设计空间必须非常大,才能探索相关的设计,但也受到了足够的限制,以使优化问题可以解决。开发相关的数学适应性功能对于准确评估软机器人设计的性能和效果至关重要。鉴于计算设计算法的重要数据要求和准确模拟的计算费用,我们旨在通过选择平衡计算时间和准确性的模型或使用学习技术来加速FEM模拟来加快模拟的速度。本论文探讨了软机器人的计算设计,重点是对数值结果的模拟到真实性。解决了两个参数软操作器的设计优化,一个具有嵌入式传感器,另一个具有自动接触功能。随着控制任务,环境和设计空间变得更加复杂,计算负担增加。这激发了从FEM模拟中学到的替代模型的发展,以表征软机器人的设计和控制。通过各种情况证明了该模型的适用性,特别是对气动操纵器的嵌入式控制和软操作器的计算设计。此外,这项工作的一个关键目标是开发工具以选择软机器人设计和控制。
使用多种模式的多模式深度学习系统,例如文本,图像,音频,视频等,表现出比单个模式(即单峰)系统更好的性能。多模式机器学习涉及多个方面:表示,翻译,对齐,融合和共同学习。在多模式机器学习的当前状态下,假设是在训练和测试时间内都存在所有模式,对齐和无声。然而,在实际的任务中,通常可以观察到缺少一种或多种方式,嘈杂,缺乏带注释的数据,具有不可靠的标签,并且在培训或测试中稀少,并且两者兼而有之。这一挑战是通过称为多模式共学习的学习范式来解决的。(资源贫乏)模式的建模是通过利用知识传递(包括其表示形式和预测模型)之间知识转移来帮助(资源丰富)模态来帮助的。
■通过统计和结构规律的复杂组合将对象分为类别。我们试图更好地理解隐式学习导致对象类别的结构特征的神经反应。成年参与者暴露于32个对象类别,其中包含三种结构属性:在隐式学习任务中,频率,可变性和共发生。在此暴露后,参与者完成了一项识别任务,然后在fMRI会议期间出示了学习对象类别的块。分析是通过从整个梭形回旋和外侧枕皮层的ROI中提取数据来进行的,并比较整个ROI的不同结构证券的影响。行为上,我们发现该符号
在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。