G类(IgG)的母体免疫球蛋白保护后代免受肠道感染的侵害,但是何时,何时何地以及这些抗体是生理产生的,并赋予保护仍然神秘。我们发现,成年小鼠中的循环IgG优先结合 - 生命肠道的共生细菌,而不是自己的成年肠道细菌。igG-分泌针对早期生命的肠道细菌的分泌浆细胞出现在断奶后的肠道中,在那里保持成年。操纵暴露于肠道细菌或浆细胞发育之前,但并非此后,断奶会减少IgG-分泌靶向早期生命肠道细菌的浆细胞。此外,这种抗肠道分子IgG反应的发展与早期生命区间一致,其中结肠中存在杯状细胞相关抗原通道(GAP)。在早期生命中被B细胞消融或细菌暴露减少的大坝的后代更容易受到肠道病原体挑战的影响。与当前的概念相反,保护性母体IgG针对后代中的肠道分子而不是肠病原体。这些早期的生活事件影响了反 - 共生IgG生产,具有保护后代的世代相传效应。
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
真菌是高度多样的,并且在生态系统中执行许多关键任务,从有机物的分解到营养物质通过菌丝的易位以及土壤中遥远的壁cor的联系。但是,真菌不孤立地生活;取而代之的是,它们与植物和动物建立了密切的关联,作为其复杂的微生物群的一部分。真菌以其对大多数血管植物的基本菌根共生体的作用而闻名,以及与藻类或蓝细菌的地衣共生的作用;鲜为人知的是它们与细菌和RNA病毒的微生物共生关系[1,2]。在1970年通过显微镜观察到了真菌中的细菌性内膜[3],最近的发现表明,这些内共生细菌可以是某些真菌中突出的特征[1,4]。相比之下,大多数在1962年正式描述[5]最初对其宿主的影响(尽管有些可以减少真菌的生长和毒力)的大多数分枝病毒。根瘤菌是一个真菌的一个充分的例子,可以携带细菌和病毒内共生菌,被称为真菌霍洛比恩(图1)。根茎物种用于生产发酵食品,酶和代谢产物。仍然,它们也可能是农作物(包括草莓,地瓜和大米)的致病性,并在免疫验证的人类中引起致命感染。在其著名的特征中,有能力产生霉菌毒素,包括根茎毒素,根茎及其衍生物。另一个引人注目的分解是R的菌株。孢子形成仅随着真菌 - 细菌共生的重建而恢复[7]。有趣的是,关于根瘤菌毒素产生和非生产菌株的研究表明,参与根蛋白毒素产生的生物合成基因并不是真菌的起源。相反,所有产生根茎毒素的菌株均由细菌共生体定植,这些菌株含有能够产生根蛋白毒素的多酮化合物生物合成基因[6]。缺乏细菌共生体的微孢子不再无性繁殖并形成孢子囊和孢子囊孢子[7]。的确,细菌共生体是在孢子孢子中遗传的(图1),以确保它们向后代的传播[7]。r。Microsporus需要2个兼容伴侣(一种构成类型的阳性(MT+)和一种负型负菌株(MT-)菌株),并与Trisporic Acid(一种性激素)的协作产生,用于形成Zygospores的性激素(图1)。非常明显,
这项工作强调了使用生物质木质素将温室气体CO 2链接起来的转换方法,以开发新的可持续可回收聚合物,以大量和非食品为基础的可再生资源。在大气压力和室温下,使用成本效率,非恒温和更绿色的方法合成了一个环状碳酸盐单体。完全可以通过改变催化剂(DBU和TBD),催化剂加载(0.5-5.0%)和反应时间(2-40分钟)来实现完全可编程的开环聚合化。最好的聚合物是在1%TBD中获得30分钟反应的1%TBD。使用光谱分析(包括1小时,13 C和2D HSQC NMR,FT-IR和GPC)建立了合成环境单体和聚合物结构的精确表征。新的聚合物表现出高分子量(M N:120.34–154.58 kDa)和足够的热稳定性(T D5%:244–277°C,来自TGA和T G:33-52°C的DSC),从DSC中)对实用应用提供了优势。显着地,在DBU存在下,CO 2和木质素的聚合物成功地通过在90°C的90°C加热12小时,成功地回收到单体,从而获得圆形塑料经济体。此过程可为另一种聚合而产生原始的单体,而无需进行化学结构的不必要变化,从而提出了最终的可持续解决方案。
共生人工智能中心(SCAAI)共生国际(视为大学),印度浦那,邀请了高度动机,合格和创造性的研究人员的申请,以进行博士后研究金研究,以研究并在AI中进行医疗保健领域的AI研究。这项工作将着重于开发用于预测和检测各种疾病和疾病的技术和工具,包括但不限于心理健康,认知行为,生理和非生理学等。SCAAI目前正在努力为医疗保健开发基于AI的最先进技术,这是在国内和国际上支持多个研究项目的一部分。选定的候选人将有一个很好的机会为这些激动人心的项目做出贡献,并在备受瞩目的期刊上发布。SCAAI与在AI为医疗保健工作的各种世界知名机构和组织有关。它也与共生大学医院和研究中心(SUHRC)密切相关。实验室设备齐全,配备了尖端的处理系统和设备,可快速发展研究工作。资格:我们正在寻找拥有博士学位的高度积极进取的申请人。 AI/ML或其外国同等学历(仅在过去五年内完成)的学位,在适当领域的前学位上具有一流或同等的分数,并且始终具有良好的学术记录。即将获得学位的候选人也有资格申请,但是,他们必须在开始职位之前提交学位证明。职责和责任:此外,成功的候选人必须在WOS和/或Scopus索引期刊上发表的同行评审的文章不少于相关的研究领域具有可观的影响因素。
在过去的150多年中,生物学发生了三项重大革命:在19世纪,通过自然选择的进化理论的发展;在20世纪,DNA的分离是所有生命形式的遗传物质。在21世纪,对微生物世界的首要地位的认可。这场最近的革命是第2个整合的结果。它始于1970年代的卡尔·沃斯(Carl Woese)的工作[1],其中他使用核酸序列来确定微生物之间的进化关系。但是,当时,这项技术缓慢而昂贵。2006年左右核酸化学的进步(即“下一代测序”)使这些确定迅速且廉价,从而使过程民主化。这一突破促进了微生物学的新观点的发展,揭示了一个我们不知道的世界。诸如NIH人类微生物组项目(2007年至2016年),Tara Oceans项目(2009年至2013年)和地球微生物组项目(2010年至今)的努力已经表明,生物圈的绝大多数多样性已经超过了现在的进化时间,直到今天,Microbos却强烈地影响了Microbobes。我们可以在肉眼中看到的那些生命形式是在这种巨大的生理和生态范围和影响的那种看不见的挂毯上的铜绿。这次革命导致的一个重大变化是对动物和植物共生与微生物的广泛蔓延的认识。Ae Douglas的学术书籍,共生互动(1994)和共生习惯(2010年),分别是在“革命”开始之前和之后写的,这些书是在“革命”开始之前和之后的。人们认为,与一组微生物保持终身关系很大程度上仅限于无脊椎动物和植物物种。鉴定微生物特种的新兴能力表明,这些分类单元之间的共生甚至比所欣赏的更普遍。但是,我们理解中最引人注目的变化是在脊椎动物上。当前的数据表明,大多数脊椎动物器官系统的粘膜表面沿粘膜表面的分类型微生物联盟的获取,开发和维护是所有颌脊椎动物的共享特征,而不仅仅是未缝合的脊椎动物。这些共生社区既直接与宿主组织相互作用,又间接通过将微生物群的代谢产物进口到宿主的代谢组中(即,血液中的小分子
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
2。政府的广泛监管方法仍然与委员会的2020年建议(即CSPL确实“……不建议创建特定的AI监管机构,并建议所有现有监管机构都应考虑并应对AI日益增长的AI在其承担责任的领域的影响和影响。” (建议4)。 我们的白皮书咨询响应阐明了我们如何通过现有监管机构以及我们采取的步骤来确保它们具有有效做到的技能,能力和协调。 其中包括:●准备和提高英国的专家监管机构 - 宣布超过1亿英镑的英镑支持创新和监管,以及英国研究与创新(UKRI)的新承诺,即未来的AI研究投资将被利用,以支持监管机构的技能和专业知识。 此软件包包括1000万英镑来支持其能力,建立在已经提供的2000英镑,以通过数字法规合作论坛建立多机构咨询服务,以支持浏览多个监管制度的创新者。 我们还致力于与政府部门和监管机构合作,分析和审查现有监管权和汇款的潜在差距。 ●推动协调和AI法规框架的连贯实施 - 除了白皮书响应,我们发布了新的指南,以帮助监管机构连贯有效地实施这些原则。CSPL确实“……不建议创建特定的AI监管机构,并建议所有现有监管机构都应考虑并应对AI日益增长的AI在其承担责任的领域的影响和影响。” (建议4)。我们的白皮书咨询响应阐明了我们如何通过现有监管机构以及我们采取的步骤来确保它们具有有效做到的技能,能力和协调。其中包括:●准备和提高英国的专家监管机构 - 宣布超过1亿英镑的英镑支持创新和监管,以及英国研究与创新(UKRI)的新承诺,即未来的AI研究投资将被利用,以支持监管机构的技能和专业知识。此软件包包括1000万英镑来支持其能力,建立在已经提供的2000英镑,以通过数字法规合作论坛建立多机构咨询服务,以支持浏览多个监管制度的创新者。我们还致力于与政府部门和监管机构合作,分析和审查现有监管权和汇款的潜在差距。●推动协调和AI法规框架的连贯实施 - 除了白皮书响应,我们发布了新的指南,以帮助监管机构连贯有效地实施这些原则。关键监管机构还将与政府一起参加新的指导委员会,以确保在AI治理景观中有效协调。为了推动透明度,我们已写信给许多监管机构,要求他们概述他们在2024年4月之前采取的步骤。●有效的风险监控 - 我们已经采取了步骤来建立一个多学科的风险监控和评估团队,在咨询响应中,我们制定了计划,计划在春季之前正式建立监管机构协调活动,并在我们的风险登记册和监视和评估框架上进行针对性的咨询。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年2月26日发布。 https://doi.org/10.1101/2024.02.25.581913 doi:Biorxiv Preprint
cnidarians和光合藻类之间的相互共生性是由宿主免疫和环境条件之间的复杂相互作用调节的。在这里,我们研究了共生如何与食物限制相互作用,以影响pallida海葵的基因表达和压力反应编程(Aiptasia)。对饥饿的转录组反应在共生和蛋白酶的动脉症之间相似。然而,凋亡的海葵反应更强。饥饿的两种共生状态的AIPTASIA均表现出蛋白质与免疫相关转录因子NF-κB的蛋白水平增加,其相关基因途径和推定的靶基因。然而,这种饥饿诱导的NF-κB的增加与仅在共生海葵中的免疫力相关。此外,饥饿对病原体和氧化应激挑战的敏感性具有相反的影响,这表明在粮食条件下稀缺的情况下有明显的能量优先级。最后,当我们比较了AIPTASIA中的饥饿反应与辅助珊瑚和非亲生海葵的饥饿反应时,“防御”反应在AIPTASIA和兼性珊瑚中类似地受到调节,但没有在非亲生血管疾病中进行调节。这种模式表明共生能力会影响Cnidarians的免疫反应。总而言之,某些免疫途径的表达(包括NF-κB)并不一定能预测对病原体的易感性,突出了Cnidarian免疫的复杂性以及在各种能量的需求下的共生影响。