。CC-BY 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.11.28.625817 doi:Biorxiv Preprint
社会昆虫建立坚固的巢穴,以物理捍卫其殖民地免受捕食者的攻击以及寄生虫和病原体的侵入。虽然许多先前关于白蚁巢的研究都集中在其身体防御功能上,但它们的巢也具有各种微生物,这些微生物在维持殖民地的卫生环境中发挥作用。在这项研究中,我们报告了白蚁巢的动态防御机制,白蚁将病原体感染的尸体埋入巢穴,增强了巢穴中共生细菌提供的抗菌防御。白蚁将病原体感染的尸体掩埋,可能构成高致病风险,而它们的嵌入材料则无感染的尸体。在埋葬尸体的巢材料中,链霉菌的丰度,抗生素产生的细菌增加并增强了巢材料的抗真菌活性。此外,该链霉菌抑制了白蚁病原体的生长,并在存在这些病原体的情况下提高了工人的存活率。这些结果表明,由尸体埋葬促进的白蚁与巢相关的共生细菌之间的相互作用有助于连续维持巢穴卫生。这项研究阐明了巢的功能作为“生活防御壁”,并增强了我们对社会昆虫采用的动态病原体防御系统的理解。
G类(IgG)的母体免疫球蛋白保护后代免受肠道感染的侵害,但是何时,何时何地以及这些抗体是生理产生的,并赋予保护仍然神秘。我们发现,成年小鼠中的循环IgG优先结合 - 生命肠道的共生细菌,而不是自己的成年肠道细菌。igG-分泌针对早期生命的肠道细菌的分泌浆细胞出现在断奶后的肠道中,在那里保持成年。操纵暴露于肠道细菌或浆细胞发育之前,但并非此后,断奶会减少IgG-分泌靶向早期生命肠道细菌的浆细胞。此外,这种抗肠道分子IgG反应的发展与早期生命区间一致,其中结肠中存在杯状细胞相关抗原通道(GAP)。在早期生命中被B细胞消融或细菌暴露减少的大坝的后代更容易受到肠道病原体挑战的影响。与当前的概念相反,保护性母体IgG针对后代中的肠道分子而不是肠病原体。这些早期的生活事件影响了反 - 共生IgG生产,具有保护后代的世代相传效应。
摘要:本研究介绍了过去二十年中与粘膜免疫和共生微生物群有关的出版物的第一个文献计量评估和系统分析,并总结了该领域研究中国家,机构和学者的贡献。分析了74171个机构的7774家作者在74个国家/地区的7774名作者在532篇期刊上发表的与粘膜免疫和共生微生物群有关的1423篇文章。体内共生微生物群与粘膜免疫之间的相互作用对于调节身体的免疫反应,保持不同类型的共生微生物群和宿主之间的通信至关重要。近年来,该领域中的几个热点已受到广泛关注,尤其是关键菌株代谢物对粘膜免疫的代谢产生,包括肠道在内的各种部位的共生微生物群的生理病理学现象,包括肠道,以及共同-19,粘膜免疫和微生物群之间的关系。我们希望本研究提供的研究领域的最后20年的全部情况将有助于向相关研究人员提供必要的尖端信息。
摘要:工业共生 (IS) 和生物经济 (BE) 的概念都侧重于减少对不可再生资源的依赖。然而,这两个参考框架很少被视为实现可持续发展的联合战略的一部分。在这里,我们在有据可查的 IS 案例研究中描述了它们如何相互作用,以确定有机副产品的当前协同模式、它们的局限性以及实现每个框架各自目标的综合举措的有希望的途径。我们首先评估了当前实践中协同作用的性质,以及它们如何促进可持续发展。其次,我们关注农业在这些共生中的作用,因为它在循环生物经济中起着根本性的作用。我们使用三个主要维度来分析我们的案例研究:IS 的出现、协同治理和参与者的偶然性。我们确定了 IS 中有机物质使用的三种主要模式,我们将其称为代谢资源、代谢生物精炼厂和全球生物精炼厂。我们的观察表明,内部和外部从业者都低估了与农业的协同作用。我们得出的结论是,虽然 BE 和 IS 的结合可以增强可持续性,但它需要一个尚未构想的专门实施战略。
在神经形态和神经杂交系统中的研究目前是现代科学和技术中最令人兴奋和有趣的多学科趋势之一。他们整合了神经科学,电子,物理和数学的领域。基于微电子设备和回忆横梁建立人工神经元和神经网络方面的最新进展刺激了朝着一般的人工智能(AI)促进了质的飞跃。在这方面,可以将神经电子学定义为对生命神经系统动机的广泛计算任务的模拟和数字解决方案的合成。基于标准或熟悉组件的模拟神经形态系统是这种方法的特殊性。与基于数字组件的AI加速器相比,它们可以显着提高吞吐量和能量效率。这样的系统模仿了生物神经网络的计算特征,这些计算特征可以解决不理解的任务(通常被描述为“认知”)被传统的AI或高度耗时的。此外,神经电源溶液可以与大脑或活神经元电路集成并形成神经杂交系统。这样的系统可以利用生物细胞的复杂分子机制(例如,记忆和适应),并支持串联人工部分进行的快速计算。这意味着通过与生活系统的互动来塑造的人工网络中计算和学习的实施,最终实施了特定的大脑功能(替换受损的神经回路或增强其功能)。自然和人工系统的共生也可能使为神经形态设备开发新的学习方法是可能的,在这些方法中,活着神经元网络充当“老师”。从基本和应用的角度来看,一个战略性问题是活着神经网络参与合成信息处理。基于合成系统和生物系统之间双向相互作用的真正混合方法的步骤可以带来显着的好处:它们可以导致
精益生产是一种组织管理模式,通过消除浪费 (Muda)、身体劳损或过度负担 (Muri) 和不规则 (Mura) (3M) 来提高生产力。最后这两者与人们的工作方式有关,而人们的工作方式往往更难而不是更聪明。精益生产有助于实现智能和有效的工作方法。本文旨在通过分析工业工程硕士学位论文背景下开发的一组最后一年项目来说明精益生产与人体工程学之间的协同作用。旨在从中确定精益生产与人体工程学解决方案之间的共生关系,以促进智能、安全和有效的工作方法。两者都对人民福利有着相似的关注,不仅提供有形利益,还提供无形利益。工业工程硕士学位论文中报告的几个最后一年的项目用于探索最后一年的工程专业毕业生在工业环境中开发的精益项目中是否考虑了人体工程学因素以及考虑了哪些因素。还研究了体现这一方面的项目阶段以及这些项目带来的好处。对论文的分析和解释表明,即使项目的工作计划没有反映对精益项目中工人条件的研究或评估,在大多数情况下,这种研究都是为了提供减少 3M 的解决方案。只有当人们受到尊重并且他们的工作条件令人满意时,精益项目的实施才有意义。当这一点得到保证时,LP 和人体工程学有助于提高公司的生产力,此外,当在精益相关项目的工作提案规划阶段考虑相关的人体工程学方面时。
摘要简介:2型糖尿病(DM2)是一种慢性代谢疾病,其特征是胰腺β细胞的胰岛素分泌缺陷高血糖水平以及对这种激素的残疾反应。它具有全球流行率,并且能够随着许多相关的并发症的发展能力,导致死亡率的增加显着影响患者的生活质量。其发病率的增加是由遗传因素,久坐的生活方式和肥胖的驱动的,对公共卫生的威胁代表了需要预防策略的威胁,这些策略着重于生活方式的改变和维持健康习惯,以减少疾病发展的风险。此外,与DM2相关的胰岛素抵抗(RI)在多囊卵巢综合征(SOP)中也起着至关重要的作用,突出了代谢监测的重要性,尤其是在女性中。SOP是一种内分泌病,其特征是形成卵巢多激素失衡,其病因仍然未知。配置了公共卫生的重要主题,因为它会显着影响生活质量和女性生殖健康。荷尔蒙变化研究具有不育症,并增加了出现肿瘤(例如子宫内膜癌)的风险。流行病学上,SOP在绝经后妇女中更为普遍,大约达到了世界女性的10%和20%。此外,内分泌疾病易于代谢综合征的发展,在这种情况下,许多携带者发展了DM2。目的:探讨PCOS对DM2诊断和预后的临床影响之间的相关性,以及验证DM2对PCOS对生殖时代女性PCOS预后的影响。方法论:在Medline和Scielo数据库中进行了系统搜索,使用战略描述符来指导我们的研究。关键字包括“多囊卵巢综合症”,“胰岛素抵抗”,“代谢”,“激素”,“糖尿病”。从精选的精选文章开始,目的是仅包括2019年至2023年之间的原始英语研究。结果:根据PCOS固有的卵巢变化,代谢综合征有助于维持卵巢功能障碍,并周期性地促成疾病的进程。因此,建议PCO与个体与一组外在和内在因素相关联,从而阻止了条件限于特定的特定因素。中,肥胖和久坐的生活标准使血脂异常易患性疾病,这种情况可能导致RI的增加,而RI则与激素因子触发的高胰岛素血症一起,可能导致糖尿病的发展。高胰岛素血症通过所描述的不同机制有助于雄激素依赖性的动脉,例如对肝脏抑制性激素(SHBG)抑制性激素的影响。这增加了血液中游离睾丸激素的生物利用度,从而触发雄激素活性的增加。此外,注意到胰岛素会增加作用于卵巢柚木细胞中雄激素的激素(LH)的刺激作用。已经发现,胰岛素刺激前GnRH介导的GnRH GNRH的释放,并积极调节下丘脑GNRH神经元中的GnRH表达,这可以有助于提高卵巢雄激素androgens androgens androgens androgens的生物合成和造成卵巢功能。此外,DM2的影响是对SOP的预后进行的,其中PCS患者与其他新陈代谢并行并联,与β-胰细胞的功能障碍有关,与葡萄糖耐受性,双血管血症,心血管疾病的风险有关。讨论:PCO与肥胖和笑声等代谢疾病有关,在肥胖和瘦女性的代偿性高胰岛素血症中表现出来,这证明了SOP患者患有代谢综合征和II型糖尿病的风险更大的事实。风险因素包括怀孕期间的荷尔蒙和环境暴露
北极陆地生态系统目前存储在地球高纬度地区的最大碳。在过去30年中,这些区域的温度水平的上升速度是全球平均水平的两倍,为每十年0.6℃(Cohen等,2014; Schuur等,2015)。这是一种强大的现象,称为北极扩增(Fengmin等,2019)。土壤微生物在将碳化合物转化为有机或无机化合物中起着重要作用,由于变暖,它们的代谢率提高。当微生物分解有机碳时,它们会释放温室气体(GHG),例如二氧化碳(CO 2),一氧化二氮(N 2 O)和甲烷(CH 4),导致全球气候变化(Mehmood等人,2020年,2020年; Marushchak等人,2021年)。在过去的800,000年中,大气二氧化碳,N2O和CH4的水平显着增加。CO 2的目前水平为390.5份百万分之390.5份,n 2 O的零件为390.5份(ppb),CH 4分别为1,803.2 ppb,这些水平分别为40、20、20和150%,比工业时代之前(Tian et et an e an and an an and an and and an and and and and and and and and and and and and and and and and and and and and and and。ch 4,仅次于CO 2之后的第二大最重要的温室气体,占自工业前时代以来变暖剂的人为辐射强迫的20%。此外,CH 4的温室作用是100年内CO 2的28倍(Tian等,2016; Ganesan等,2019; Hui等,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。由于北极扩增,全球气候变化将导致北极土壤变暖和CH 4排放。然而,尚未发现变暖对CH 4释放的影响,从而导致气候变化。微生物代谢过程长期以来一直是对气候变化的关键驱动因素和反应者(Singh等,2010)。根据研究发现,不同的土壤微生物通过与微生物组成相关的不同代谢途径产生温室气体,从而提高了对温室气体排放的理解。例如,大多数土壤微生物通过分解和异养呼吸对CO 2排放产生了巨大贡献(Watts等,2021)。类似于CO 2排放,生物CH 4的排放受土壤微生物甲烷生成和CH 4氧化的控制,来自土壤,湖泊和其他陆地陆地,尤其是北极土壤(Nazaries等,2013; Tveit et al。微生物甲烷生成是一组厌氧甲烷古细菌进行的过程(Song等,2021)。虽然其他微生物可以分解CH 4,从而减少CH 4向大气中的释放,但微生物甲烷发生对全球CH 4排放造成了很大的贡献,并且了解其对变暖时间的反应至关重要,这对于预测有效的温室气体和气候变化之间的反馈(Lee等人,2012年; Chen等,2020年)。此外,预计在按年来衡量的长期变暖的情况下,微生物组成将发生变化(Deslippe等,2012; Pold等,2021; Zosso等,2021; Rijkers等,2022; Zhou等,2023)。同时,生物CH 4排放也是由于长期微生物发酵而变暖引起的(Altshuler等,2019; Hui等,2020; Zhang等,2021)。但是,气候变化是一个过程
图1:多级游戏理论框架:战略水平,操作级别和战术水平游戏。战略水平游戏是描述高级决策的游戏,例如资源分配和投资计划。战略水平游戏的目标是制定长期计划,以实现网络仓库的总体目标。战术级别的游戏涉及可以实施的特定行动和操纵,以实现立即目标以支持总体策略。网络战术中的策略示例包括蜜罐的配置和攻击者参与政策。运营级游戏位于战略和战术层面之间,重点是计划和协调一系列国防行动。示例包括从情报收集到应对横向运动以实现战略水平目标的一系列网络防御策略的计划。
