摘要:研究化学反应,特别是气相化学反应,很大程度上依赖于计算散射矩阵元素。这些元素对于表征分子反应和准确确定反应概率至关重要。然而,量子相互作用的复杂性带来了挑战,需要使用先进的数学模型和计算方法来应对固有的复杂性。在本研究中,我们开发并应用了一种量子计算算法来计算散射矩阵元素。在我们的方法中,我们采用基于 Møller 算子公式的时间相关方法,其中反应物和产物通道之间的 S 矩阵元素通过反应物和产物 Møller 波包的时间相关函数确定。我们成功地将我们的量子算法应用于计算一维半无限方阱势和共线氢交换反应的散射矩阵元素。随着我们探索量子相互作用的复杂性,这种量子算法具有通用性,并成为一种有前途的途径,为在量子计算机上模拟化学反应提供了新的可能性。
本研究考察了孔隙度对髋臼钢焊接件抗疲劳性的影响。进行了文献综述以确定控制含孔隙焊缝疲劳寿命的参数。开发了一个预测模型,结合这些参数来考虑疲劳的开始和扩展。使用该模型检查了四种类型的孔隙度:单孔隙度、均匀孔隙度、共线孔隙度和簇孔隙度。研究并讨论了模型对参数(板厚、应力比、残余应力、孔隙大小和孔隙类型)的敏感性。从 SL-7 负载历史数据开发了可变幅度负载历史,并用于预测实际使用寿命。这项研究的主要结论是,如果焊缝增强层保持完整,那么焊缝中的孔隙度无关紧要。如果去除增强层,孔隙度的类型和大小将控制疲劳寿命。当受到服务清单的影响时,预计焊缝在任何正常设计寿命内都不会失效。最后,结果与美国船级社的船体焊缝无损检测规则相关。从保守的角度来看,该规范是保守的。
摘要原子技术的商业化需要用紧凑和可制造的光学平台代替实验室规模的激光设置。可以通过集成的光子学和元图光学的组合在芯片上生成自由空间的复杂布置。在这项工作中,我们使用平流芯片键合将这两种技术结合在一起,并展示了一种集成的光学体系结构,以实现紧凑的跨原子钟。我们的平面设计包括两个共对准的磁磁陷阱中的十二个光束。这些梁位于芯片上方,在中央位置与直径高达1厘米的中心位置相交。我们的设计还包括两个在晶格和时钟波长的联合传播光束。这些梁在共线和垂直方向发射以探测磁陷阱的中心,在那里它们的直径为≈100µm。使用这些设备,我们证明了我们的集成光子平台可扩展到任意数量的光束,每个光束具有不同的波长,几何形状和极化。
摘要:具有非共线自旋排列的磁性材料由于其在新兴的计算技术和记忆设备中的潜在用途而引起了极大的兴趣。竞争的磁相互作用,即磁挫败感,是非连续性磁性结构的主要起源之一。虽然沮丧的系统主要是在磁绝缘子中研究的,但将磁性挫败与电气连接率相结合可以同时进行电荷和自旋操作,这对于电子设备的设计至关重要。在这里,我们提出了一个新的金属间实心溶液LAMN 2 -x au 4+ X,其晶体结构可容纳磁性沮丧的MN方形网。粉末中子衍射和第一原理分析提供了证据表明,金属lamn 2-x au 4+ x相可以托管以挫败感驱动的刺猬旋转涡流晶体为一种罕见的非胶流磁状态,以前是针对铁pnictides的唯一观察到的。■简介
磁性系统中的手性相互作用可产生丰富的物理现象,例如,表现为非平凡的自旋纹理。造成手性磁性的最重要的相互作用是 Dzyaloshinskii-Moriya 相互作用 (DMI),它是由强自旋轨道耦合下反演对称性破缺引起的。然而,DMI 的原子起源及其与拓扑霍尔效应 (THE) 等新兴电动力学现象的关系仍不清楚。在这里,我们研究了界面 DMI 在 3 d –5 d 过渡金属氧化物基 LaMnO 3 /SrIrO 3 超晶格中从手性自旋纹理上对 THE 的作用。通过以原子级精度对界面反演对称性进行加法设计,我们将界面共线铁磁相互作用和 DMI 之间的竞争直接与增强的 THE 联系起来。控制 DMI 和由此产生的 THE 的能力指向了一条利用界面结构来最大化手性自旋纹理密度的途径,这对于开发高密度信息存储和用于量子信息科学的量子磁体很有用。
作为第一步,我们将开发一项超快实验,该实验基于适当数量的相位相干超短光脉冲的组合,以选择性地激发固体。我们将特别努力通过非共线光学参量放大器合成短至 10 飞秒的光脉冲(与米兰理工大学的 Giulio Cerullo 教授合作)。同时,我们将开发合适的理论模型来处理超快时间尺度和相互作用环境中的量子动力学。 作为第二步,我们将研究各种关联材料中的电子退相干动力学,例如 LaVO 3 和 V 2 O 3 ,它们是关联驱动的莫特绝缘体的典型例子。通过结合实验和理论结果,我们将探讨通过调整系统的温度、应变、激发协议和化学性质来增强退相干时间的可能性。我们还将研究相干操控 V 2 O 3 中的光诱导绝缘体到金属转变的可能性,以及可能相干控制其他系统中的相变(例如氧化铜中的超导性)。
因此与磁场成正比。异常霍尔效应 (AHE) 与铁磁体中的磁化有关,磁化通常源于动量空间中的 Berry 相。[3] 然而,发现一种新型霍尔效应既不依赖于磁场也不依赖于磁化。它起源于标量自旋手性 χ ijk = S i × ( S j × S k ),由非共面或非共线自旋配置(例如螺旋、畴壁或 skyrmion)产生。[3,5,6] 当传导电子穿过非共面自旋结构时,会在实空间中产生量子力学 Berry 相,并与虚拟磁场相关。该场是这种特殊霍尔效应的起源,称为拓扑霍尔效应 (THE)。 [3] 在大多数情况下,THE 的形成是由非零的 Dzyaloshinskii–Moriya 相互作用 (DMI) 驱动的,这需要强自旋轨道耦合 (SOC) 的存在和反演对称性的破坏。因此,由 skyrmions 诱导的 THE 首次在非中心对称的 B20 化合物(如 MnSi、MnGe 和 FeGe)中观察到。[7–10] 由于拓扑自旋的存在,THE
随着可机动飞行器和计划进入深空(即超越地球同步地球轨道(GEO))的飞行器越来越多,空间环境变得越来越拥挤,空间领域感知(SDA)和空间交通管理(STM)变得越来越具有挑战性。由于地球轨道卫星和地月轨道卫星之间的距离很大且观测几何有限,因此空间基地月领域感知任务的轨道设计是一个重要课题。必须为地月空间物体建立复杂的天体动力学模型,因为月球引力不能像在地球轨道飞行器动态模型中那样被忽略或视为地月物体跟踪动态模型的扰动。地月空间体系在天文学、行星际任务分级、月球探索和通信以及地球轨道插入等应用方面具有重要价值,因此越来越受到航天工业的关注 [1]。放置在地月共线拉格朗日点 L1 和 L2 的航天器可以避免地球和月球的重力井、表面环境问题以及人造和天然空间碎片。这些航天器需要较低的驻留推进剂(每秒厘米级),并且可以在 L1 和 L2 之间或地月空间和日地空间之间飞行 [2]。
螺旋自旋结构是磁性诱导的手性的表达式,纠缠了材料1-4中的偶极和磁性。最近发现的螺旋范德华多表情到超薄限制,在二维5,6中提高了大手性磁电相关的前景。但是,到目前为止,这些耦合的确切性质和大小尚不清楚。在这里,我们对exfoliated van der waals多效率的对映射结构域的动力学磁电耦合进行精确测量。我们使用集体电磁模式在共振中评估了这种相互作用,并使用超快光学探针套件捕获了其振荡对材料偶极和磁性阶的影响。我们的数据显示,在Terahertz频率上具有巨大的自然光活性,其特征在于电化和磁化成分之间的正交调制。第一原理的计算进一步表明,这些手性耦合源于非共线自旋纹理与相对论自旋 - 轨相互作用之间的协同作用,从而使晶格介导的效应具有实质性增强。我们的发现突出了相互交织的订单的潜力,使其在二维极限内启用独特的功能,并为以Terahertz速度运行的范德华磁电机设备的开发铺平了道路。
高能 X 射线探测器 (HEX-P) 是 NASA 提出的一项探测器级任务,它将高角分辨率与宽 X 射线带通相结合,为解决未来十年的重要天体物理问题提供了必要的能力飞跃。HEX-P 通过结合经验丰富的国际合作伙伴开发的技术实现了突破性的性能。为了实现科学目标,有效载荷由一套共线 X 射线望远镜组成,旨在覆盖 0.2-80 keV 带通。高能望远镜 (HET) 的有效带通为 2-80 keV,低能望远镜 (LET) 的有效带通为 0.2-20 keV。HEX-P 将发射到 L1 以实现高观测效率,带通和高观测效率的结合为广泛的科学服务于广大社区提供了强大的平台。基线任务为 5 年,其中 30% 的观测时间用于 PI 主导的项目,70% 用于一般观察 (GO) 项目。一般观察项目将与 PI 主导的项目一起执行。