a Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK b Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal *Email: gb453@cam.ac.uk Dek: A tyrosine-targeting bioconjugation reaction导致CAS9蛋白质肽结合物显示出细胞递送增加20倍。https://pubs.acs.org/doi/10.1021/acscentsci。0 C00940链接到“靶向酪氨酸靶向生物偶联反应”的链接残基半胱氨酸和赖氨酸是生物偶联化学的无可争议的拥护者。靶向其他氨基酸已被吹捧为改善蛋白质肽和蛋白质 - 蛋白质缀合物的合成的潜在方法,这些方法经过广泛研究,以其潜在的治疗能力,并用作理解生物学功能的工具。现在,加利福尼亚大学伯克利分校的一组研究人员针对溶剂曝光的酪氨酸残留物,以开发一种准备这种共轭物的方法。1,由于蛋白质的化学毒素不同,蛋白质肽和蛋白质 - 蛋白质结合物的合成可能很棘手,从而提出化学选择性和现场特异性挑战。2生物正交化学的使用已成功克服了其中的一些挑战,但通常需要冗长的合成才能掺入不自然的氨基酸。同时,使用天然蛋白质功能通常仅限于N-或C末端,或导致无选择的标记亲核残基(例如半胱氨酸或赖氨酸)。酶酪氨酸酶用于将溶剂暴露的酪氨酸残基氧化为Quinone官能团。由于这些原因,人们非常有兴趣扩展允许仔细阐述蛋白质体系结构的方法的工具箱。在他们在ACS Central Science发表的最新作品中,由Francis,Doudna和Fellman领导的团队描述了一种耦合两种生物分子的方法,分别含有酪氨酸和半胱氨酸残留物。随后,该组与硫化成分反应,从而导致两种底物之间形成新的共价键(图1)。这是基于团队以前在利用原位形成的奎因酮功能的经验,目的是与存在于脯氨酸残基和苯胺等生物分子上的其他亲核试剂的反应。3,4虽然大多数蛋白质通常贡献半胱氨酸或赖氨酸残基作为生物偶联反应的亲核成分,但形成了亲电矫正剂量子酮的形成,代表了一种有趣的Umpolung方法,具有潜力,可以扩展蛋白质生物偶联化学空间。
纳米凝胶在降低癌症耐药性中的应用Vitalis B. Mbuya,N。Vishal Gupta**和Tenzin Tashi药物系JSS药学系,JSS药学院,JSS JSS大学,Sri Shivarathreeshwara Nagara,Mysuru,Mysuru,Karnataka,Karnataka,sri Shivarathreeshwara _____________________________________________________________________________________________ ABSTRACT Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy.MDR的潜在因素包括增强的药物解毒,药物摄取降低,细胞内亲核试剂水平升高,药物诱导的DNA损伤的修复,过度的药物转运蛋白(例如P-糖苷蛋白(P-GP)),多药耐药性抗性蛋白(MRP1,MRP1,MRP2)(MRP1,MRP2)和乳腺癌耐药蛋白(MRP1,MRP1)和BCRP(BCRP)。已开发出新的化学治疗药物递送系统来打击耐药性和多药耐药性。纳米凝胶用于在癌症化学疗法中更有效地输送药物。这些新颖的应用和技术包括:用于加载siRNA的纳米凝胶。这是一个小的干扰RNA(siRNA)是一类双链RNA分子,该分子由21-23个核苷酸组成,涉及抑制由Messenger RNA编码的蛋白质合成。纳米凝胶用作携带siRNA的载体。另一种技术和应用是基于透明质酸的纳米凝胶 - 药物结合物,其抗癌活性增强,旨在靶向CD44阳性和耐药性肿瘤。关键词:纳米凝胶的应用;耐药性癌症化疗;癌症化疗中的纳米凝胶。在这种技术中,具有疏水性核心的小纳米凝胶颗粒和在超声波化后形成的高药物载荷,并在可生物降解酯连接的水解后证明了持续的药物释放。将在本评论文章中讨论的其他技术和应用程序包括;活化的核苷类似物的新型抗癌聚合物共轭物,具有磷酸化核苷类似物的纳米凝胶制剂和5'三磷酸核苷类似物的5'三磷酸酯的交联聚合纳米凝胶制剂。_____________________________________________________________________________________________ INTRODUCTION The term ‘nanogels' defined as the nanosized particles formed by physically or chemically crosslinked polymer networks that swell in a good solvent.首先引入了术语“纳米凝胶”(纳米凝胶)(纳米凝胶),以定义聚子和非离子聚合物的交联双功能网络,用于递送多核苷酸(交联的聚乙烯胺(PEI)(PEI)(PEI)和聚乙二醇)和(PEG-cl-cl-cl-cl-Pei)。纳米技术领域的突然爆发引入了开发纳米凝胶系统的需求,这些纳米凝胶系统证明了他们以受控,持续和可目标的方式运送药物的潜力。[1]癌症的治疗涉及手术,包括手术,放疗和化疗。化学抗性的发展是治疗局部和传播疾病期间的持续问题。有选择地但不仅靶向积极增殖细胞的大量细胞毒性药物包括诸如DNA烷基化剂,抗替代剂,抗量代谢剂,互化剂和有丝分裂抑制剂等多种基团。抗性构成对药物诱导的肿瘤生长抑制的反应;它可能是异质癌细胞亚群固有的,也可能是对药物暴露的细胞反应。主要机制可能包括涉及多药耐药性(MDR)基因的P-糖蛋白产物以及其他相关蛋白的膜转运的改变,改变了靶酶(例如,突变的拓扑异构酶II),药物激活降低,
•由EQT Life Sciences和Nextech Invest 1组成的融资共同领导1,参与全球和新领先的全球生物技术投资者的参与•收益将支持对实体肿瘤ADC候选者的临床评估,TUB-030和TUB-040和TUB-040和TUB-040,进一步的技术开发,进一步的技术发展,并在3月14日宣布了ANS,UP SOURPOR,今天宣布了纽约市,今天宣布了纽约市的临床。 1.28亿欧元(1.388亿美元)系列B2融资。The round was co-led by EQT Life Sciences and Nextech Invest Ltd, on behalf of one or more funds managed by it, with participation from new US-based funds, Frazier Life Sciences and Deep Track Capital as well as all existing investors, including Andera Partners, BioMedPartners, Fund+, Bayern Kapital (with ScaleUp- Fonds Bayern), Evotec, coparion, Seventure Partners, OCCIDENT和High-TechGründerFonds(HTGF)。Tubulis正在开发具有独特匹配的抗体药物共轭物(ADC)的管道,具有指示性的靶向靶向分子和有效载荷组合,以开发具有出色特性的新型ADC。系列B2的收益将主要支持Tubulis的下一代ADC管道中的进展,以实现临床评估,并有助于实现铅候选者的临床概念证明,TUB-040和TUB-030。TUB-040解决了肿瘤 - 抗原Napi2b,这是卵巢癌和肺癌中特征良好的靶标和浴缸030靶标5T4,这是一种在实体瘤中通常过表达的抗原。这两个候选人的临床前概念验证数据将在4月的美国癌症研究协会(AACR)年会上介绍。该公司预计将开始其第一阶段1/2A临床试验,包括2024年的剂量升级和剂量优化队列。资本还将资助Tubulis的技术平台套件的扩展,以解锁新颖的有效载荷,以开发多功能和可定制的ADC。与增加美国投资者的增加,Tubulis计划通过建立美国子公司来增加其公司足迹。“来自全球专家生物技术投资者集团的这笔大量融资都认可了Tubulis在ADC领域的独特地位。我们的专有平台技术和内部专有技术是我们真正分化的蛋白质 - 药物结合物的基础。“我们的目标是在我们过渡到临床阶段的公司并利用ADC的全部力量以将其治疗价值带给实体瘤患者时,将小管作为全球ADC领导者。” EQT Life Sciences和Kanishka Pothula的董事总经理Christoph Broja结合融资,Nextech Invest的董事会合伙人将加入Tubulis的监督委员会。可以在网站上使用以下链接在网站上找到所有成员及其传记的概述。Nextech Invest的执行合伙人Kanishka Pothula Kanishka Pothula评论说:“肿瘤学的最新发展强调了ADC在治疗实体瘤的巨大潜力。 我们坚信小管将处于下一波ADC疗法的最前沿。 团队不断突破ADC设计的界限,并开发了一套令人印象深刻的平台技术Kanishka Pothula评论说:“肿瘤学的最新发展强调了ADC在治疗实体瘤的巨大潜力。我们坚信小管将处于下一波ADC疗法的最前沿。团队不断突破ADC设计的界限,并开发了一套令人印象深刻的平台技术
64像素阵列/矢量(A 1- a 64),其中每个像素具有值:-1(白色)或1(黑色)(图。2a和图2b)。
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。