摘要目的:先前的研究表明,气候变化披露在解决与人类存在有关的全球可持续性挑战和企业的长期生存能力方面发挥的关键作用。这项研究的目的是增加有关与气候变化相关的披露对尼日利亚石油和天然气公司财务业绩影响的现有文献。研究方法论:该研究采用了事后研究设计,最终样本由2012 - 2021年NGX上列出的八个石油和天然气公司组成。最终样本由80个公司年度观察的平衡面板组成。因变量是资产回报(ROA)。数据。结果:研究结果表明CCRD和ROA之间存在正相关关系,这在5%的显着性水平上也具有显着性。限制:模型还包括杠杆,审计质量和公司规模,除了CCRD外,还包括其对ROA的影响。因此,模型中未包括其他可能影响公司绩效的因素。贡献:本研究介绍了SSA最大经济体之一中最重要但较少的环境研究问题之一。从内容分析中收集的数据是原始的,并提供了CCRD对公司绩效的影响的重要证据。这些发现鼓励石油和天然气公司减少其碳排放并披露其碳管理活动。气候变化披露和尼日利亚石油和天然气公司的财务绩效。1。关键字:气候变化,温室气(GHG),气候变化相关披露(CCRD),资产回报率(ROA)如何引用:AGBO,E。和Egbunike,C。F.(2024)。管理与组织研究年鉴,5(3),143-161。引言气候变化已将全球议程的焦点置于构成对人类生存威胁的惊人挑战(Lee等,2024)。气候变化是指人类活动,特别是温室气体排放造成的天气模式和全球温度的长期变化。气候变化的主要原因是化石燃料(例如煤炭,石油和气体)燃烧,它们将二氧化碳(CO 2)释放到大气中。由于其对生态系统,经济和人类健康的影响,它已成为一个重大的全球问题(Ratul,Nayma和Rahman,2023年)。气候变化对公司,消费者和社会事业的直接影响使其成为至关重要的问题(Ratul等,2023)。因此,一些政府,非政府和地区组织关注气候变化。它已纳入全球可持续发展目标(SDG)的可持续发展目标13中。可持续发展目标提供了减轻气候变化的有害影响的建议。诸如煤炭之类的化石燃料的用法已被证明有助于全球二氧化碳排放(Dagar等,2022; X。Wang,Khurshid,Qayyum和Calin,&Calin,2022)。也通常是
摘要:豆科植物能够与土壤细菌(即根瘤菌)建立共生关系。豆科植物与根瘤菌的共生关系会形成共生根瘤,而根瘤菌会固定大气中的氮。宿主植物会控制共生根瘤的数量以满足其氮需求。研究表明,根部在接种根瘤菌和/或硝酸盐后产生的 CLE(CLAVATA3/胚胎周围区域)肽可以控制共生根瘤的数量。此前,研究发现,在蒺藜苜蓿中,MtCLE35 基因会受到根瘤菌和硝酸盐处理的上调,当过表达时,会系统性地抑制根瘤形成。在本研究中,我们获得了几个使用 CRISPR/Cas9 介导系统突变 MtCLE35 基因的敲除系。与野生型植物相比,敲除 MtCLE35 基因的 M. truncatula 品系在硝酸盐存在的情况下产生的根瘤数量增加。此外,在硝酸盐存在的情况下,接种根瘤菌的根中其他两个与结瘤相关的 MtCLE 基因 MtCLE12 和 MtCLE13 的表达水平降低,而硝酸盐处理和接种根瘤菌的对照根中 MtCLE35 基因表达没有显著差异。总之,这些发现表明 MtCLE35 在高硝酸盐条件下对根瘤数量起着关键作用,在高硝酸盐条件下其他与结瘤相关的 MtCLE 基因的表达水平降低。
参与本论文的作者及其对各篇文章的贡献如下:Ashlin EDICK 是硕士候选人,她与其主要导师和委员会协商后设计并执行了所有实验。她收集并分析了数据。她准备了手稿和图表草稿以供科学出版。Sergio BURGOS 博士是论文导师,这项研究是在他的指导下进行的。他协助候选人设计和执行实验以及校对、审查和处理手稿以供出版。Julianne AUDETTE 在 Ashlin EDICK 和 Sergio BURGOS 博士的指导下协助执行精选实验。文献综述由 Ashlin EDICK 在 Sergio BURGOS 博士的指导下起草和修订。引言、讨论和结论由 Ashlin EDICK 起草和修订。
背景:硬化菌核(SS)是一种广泛的宿主范围,可影响400多种植物物种。ss cys camelina sativa(CS)的茎腐病疾病是一种适用于低输入作物和工业油属性的Allohexaploid crucifer物种,适用于生物燃料和润滑剂。组织化学和分子研究已将C. sativa中的SS抗性与细胞壁木质化联系起来(Eynck等,2012),并报道了CSS抗性线CN114263中的Cinnamoyl-COA还原酶4(CSCCR4)基因的组成型表达。现代繁殖工作(例如基因编辑)需要改善商业线条,并限制农作物损失的风险,这对生产者来说是重要的。目的:为了研究单极生物合成的重要性以及CSCCR4在Camelina对SS耐药性中的作用,我们使用CRISPR/CAS9介导的基因编辑产生了CN114263 Camelina系的CSCCR4敲除突变体。材料和方法:三十T1植物是通过花卉浸入转化产生的,然后是草甘膦喷雾,该植物在筛选程序的第一步中使用,并通过PCR方法确认。使用数字液滴PCR(DDPCR)确定T1和T2祖细胞中T1和T2祖细胞中的T-DNA拷贝数变化T-DNA CNV,并且通过下降测定技术对T1和T2代的CSCCR4同源物的三个副本中的三个副本中的突变发生。为确保T2植物中的突变体是真实的,对其中三个的cas9/ grna特异性裂解点侧面进行了topo ta测序。在T2代生成中,筛选了CSCCR4基因中的潜在突变。结果:在T1代中,确认了25种植物,这些植物在相应的Camelina基因组中具有1至9个TNA拷贝。在CSCCR4的三个副本中证明了各种类型的突变,包括插入和缺失。实际上,CRISPR系统可以分别在编号T2-Plant 10,T2-Plant 15和T2-Plant 19的事件中删除一个,两或三个副本。T3-plant 19在上一代中所有版本的CSCCR4中表现出突变具有易感性的螺旋杆菌侵袭,并保留为实际CSCCR4突变体材料,以进一步研究骆驼 - 螺旋菌相互作用。CSCCR4中的突变是通过容易出错的非同源端连接(NHEJ)核DNA修复途径发生的。ss挑战早期开花的T3一代。与WildType对照母体CN114263相比,在CSCCR4位置217处的突变的T3植物在CSCCR4位置217处的过早停止密码子受到了损害。结论:使用DDPCR很容易识别T1和T2祖细胞中CSCCR4同源物中的T-DNA CNV和突变的发生。我们说明,CRISPR/CAS9介导的突变是一种体面的技术,可以用来加快突变线的发展,可以帮助您弄清CSCCR4基因在防御:sativa C. c. c. c.c。sativa中的活性,作为前瞻性石油种植作物的生物柴油生产。
越来越多的证据表明,表观遗传学在调节所有类型主动脉瘤的发病机制中也起着关键作用。众所周知,表观遗传因素会调节基因表达。这种机制似乎很有趣,尤其是了解遗传易感性和遗传因素与主动脉瘤和散发性动脉瘤复杂病理生理学的关系;事实上,后者是遗传因素和可改变的生活方式因素(即营养、吸烟、感染、吸毒、饮酒、久坐的生活方式等)密切相互作用的结果。表观遗传因素包括 DNA 甲基化、翻译后组蛋白修饰和非编码 RNA。在这里,我们的注意力集中在 miRNA 在综合征型和散发型胸主动脉瘤中的作用。它们既可以作为生物标志物,也可以作为新治疗策略的靶点。
许多植物物种和基因型对转化和再生 (TR) 的适应性存在很大差异,这对基因工程在研究和育种中的应用提出了挑战。为了帮助了解这种变异的原因,我们使用 1204 棵野生黑杨树种群进行了关联作图和网络分析。为了对愈伤组织和嫩枝 TR 进行精确和高通量的表型分析,我们开发了一种计算机视觉系统,可以交叉引用互补的红、绿、蓝 (RGB) 和荧光高光谱图像。我们使用单标记和组合变异方法进行了关联作图,然后对已发表的多组学数据集进行了上位性和整合的统计检验,以确定可能的调控中心。我们报告了 409 个与编码序列 5 kb 范围内的关联有关的候选基因,上位性测试表明其中 81 个候选基因是彼此的调节因子。与蛋白质 - 蛋白质相互作用和转录调控相关的基因本体术语被过度使用。除了长期确定对 TR 至关重要的生长素和细胞分裂素通路之外,我们的结果还强调了应激和伤害通路的重要性。这些通路内和跨通路的潜在信号调节中心包括生长调节因子 1 (GRF1)、磷脂酰肌醇 4-激酶 β 1 (PI-4K β 1) 和 OBF 结合蛋白 1 (OBP1)。
Luisa DE MARCO - CNR NANOTEC 能源存储设备在清洁能源转型中发挥着关键作用,使可再生能源和电动汽车的使用成为可能。目前,锂离子电池占据市场主导地位,但其基于关键原材料(如钴),这些原材料的天然储量低、成本高且毒性大,促使人们寻找替代材料。HYNANOSTORE – 可持续能源存储的混合纳米结构系统项目最近由 ERC Consolidator 拨款资助,其目标是开发基于有机材料的可充电电池。我们提出了一种创新装置,其中天然氧化还原分子与导电纳米结构相结合,以获得廉价、绿色和多功能的能源存储设备。SWOT 分析将是成功实施该项目并利用这一机会进行绿色能源存储技术创新的有用工具。
同源重组 (HR) 与基因组复制有着密切的关系,无论是在修复可能阻止 DNA 合成的 DNA 损伤期间,还是在解决复制叉停滞时。最近的研究让我们想知道 HR 是否在复制真核寄生虫利什曼原虫的基因组中发挥着更为核心的作用。关于 HR 基因是否必需,出现了相互矛盾的证据,而全基因组图谱为 DNA 复制起始位点(称为起源)的非正统组织提供了证据。为了回答这个问题,我们采用了 CRISPR/Cas9 和 DiCre 的组合方法来快速生成和评估利什曼原虫中 RAD51 和三种 RAD51 相关蛋白的条件性消融的影响。使用这种方法,我们证明任何这些 HR 因子的丧失都不会立即致命,但在每种情况下,生长都会随着时间的推移而减慢,并导致 DNA 损伤和具有异常 DNA 含量的细胞的积累。尽管存在这些相似之处,但我们表明,只有 RAD51 或 RAD51-3 的缺失才会损害 DNA 合成并导致全基因组突变水平升高。此外,我们还表明这两个 HR 因子的作用方式不同,因为 RAD51 的消融(而不是 RAD51-3)对 DNA 复制有重大影响,导致主要起点处的起始丧失和亚端粒处 DNA 合成增加。我们的工作澄清了有关 HR 对利什曼原虫生存的重要性的问题,并揭示了 RAD51 在微生物真核生物基因组复制程序中意想不到的核心作用。
鉴于萨斯喀彻温省药剂师在实施公共资助免疫计划(例如季节性流感免疫计划、COVID-19 免疫接种计划)方面发挥的关键作用,本文件重点介绍了萨斯喀彻温省卫生部/药物计划和扩展福利部门可能设定额外要求的领域。有关卫生部和 SCPP 标准之间差异的常见问题,请参阅 SCPP 的注射和其他途径药物管理常见问题解答。但是,实施公共资助计划的药房务必关注卫生部网站,以随时了解全面的要求列表。
原发性膜性肾病 ( primary membranous nephro- pathy , PMN ) 是全球成人肾病综合征常见的病因 , 也是中国原发性肾小球疾病中发病率第二 、 增长 最快的疾病 [ 1 ] 。大多数 PMN 患者有典型的临床表 现 , 包括大量蛋白尿 、 低蛋白血症 、 水肿和高脂血 症等。近 30% 的 PMN 患者能够获得自发缓解 , 但 中危和高危患者 , 即大量蛋白尿 、 肾功能不稳定的 患者 , 缓解的可能性较低 [ 2 ] 。 既往研究表明 , 线粒体功能障碍在急性肾损伤 ( acute kidney injury , AKI ) 和慢性肾脏病 ( chronic kidney diseases , CKD ) 的发病机制和肾脏修复中发 挥关键作用 [ 3 - 4 ] 。线粒体功能与线粒体 DNA ( mito- chondrial DNA , mtDNA ) 的完整性密切相关 , 当线 粒体受损时 , mtDNA 会从线粒体基质释放到细胞 质或细胞外 , 进而激活氧化应激反应 , 并作为炎症 介质激活自然免疫炎症反应 [ 5 ] 。目前多项研究表 明 , 尿 mtDNA 是各种肾脏疾病中线粒体损伤的替 代标志物 [ 6 ] 。我们之前的研究表明 , mtDNA 在尿液 和肾脏组织中容易被检测到 , 其拷贝数与糖尿病肾 脏疾病的肾功能下降和肾脏病理结构改变有关 [ 7 ] 。 另一项研究指出 , 尿液中 mtDNA 与肾功能下降速 度有关 , 并能预测非糖尿病肾脏疾病患者血肌酐翻 倍或需要进行透析治疗的风险 [ 8 ] 。然而 , 尿 mtD- NA 在 PMN 患者中的改变及其对预后的预测作用 仍不明确。本研究旨在探讨尿 mtDNA 与 PMN 患