HIP4080 没有像 HIP4081 那样的输入协议,除了通过 DIS 引脚外,该协议还可以使两个低功率 MOSFET 保持关闭状态。IN+ 和 IN- 是比较器的输入,比较器控制桥接,使得一次只有一个低功率器件处于打开状态(假设 DIS 为低)。但是,通过在芯片启用时控制下部开启延迟引脚 LDEL,可以保持两个下部 MOSFET 处于关闭状态,如图 2 所示。将 LDEL 拉至 V DD 将通过输入比较器无限期地延迟下部开启延迟,并使下部 MOSFET 保持关闭状态。在下部 MOSFET 关闭且芯片启用的情况下,即 DIS = 低,IN+ 或 IN- 可以在整个周期内切换,从而正确设置上部驱动器输出。完成此操作后,LDEL 将释放到其正常工作点。至关重要的是,当 LDEL 保持高电平时,IN+/IN- 必须切换一个完整的周期,以避免击穿。此启动过程可以通过图 2 中的电路的电源电压和/或芯片启用命令来启动。
- 欢迎参加今天的简报和问答活动,主题是新的 DASA 竞赛:保护实物资产免受无人驾驶 UAS 的侵害 - 请注意,您的摄像头和麦克风将保持关闭状态。
3 系统模块 ................................................................................................................................................ 6 3.1 CPU .......................................................................................................................................... 6 3.2 内存 .......................................................................................................................................... 6 3.2.1 ROM ............................................................................................................................................. 8 3.2.2 SRAM ............................................................................................................................................. 8 3.2.3 FLASH ............................................................................................................................................. 8 3.2.4 eFuse ............................................................................................................................................. 8 3.2.5 内存地址映射 ............................................................................................................................. 9 3.3 引导和执行模式 ............................................................................................................................. 9 3.3.1 引导加载程序 ............................................................................................................................. 9 3.4 电源、时钟和复位 (PCR) ............................................................................................................. 10 3.5 电源管理 (POWER) ................................................................................................................ 10 3.6 低功耗特性.................................................................................................................... 12 3.6.1 工作和休眠状态 .......................................................................................................................... 12 3.6.1.1 正常状态 .......................................................................................................................... 12 3.6.1.2 时钟门控状态 ...................................................................................................................... 12 3.6.1.3 系统休眠状态 ...................................................................................................................... 12 3.6.1.4 系统关闭状态 ...................................................................................................................... 12 3.6.1.5 UVLO .................................................................................................................................... 12 3.6.2 状态转换 ................................................................................................................................ 13 3.6.2.1 进入时钟门控状态和唤醒 ...................................................................................................... 13 3.6.2.2 进入睡眠/关闭状态和唤醒 .............................................................................................. 13 3.7 中断................................................................................................................................... 13 3.8 时钟管理................................................................................................................................... 14 3.9 IOMUX...................................................................................................................................... 15 3.10 GPIO...................................................................................................................................... 17 3.10.1 DC 特性............................................................................................................................. 17
多种人类癌症的发病机制。1值得注意的是,KRAS 是一种常见突变,导致许多癌症病例中该基因的激活,包括 80% 至 90% 的胰腺癌、40% 至 50% 的结直肠癌和 30% 的非小细胞肺癌。1然而,对于携带 KRAS 突变的个体,临床治疗选择受到相当大的限制。目前,FDA 仅批准两种小分子抑制剂 sotorasib 和 adagrasib 用于治疗 KRAS G12C 突变的非小细胞肺癌,这表明 KRAS 靶向治疗的临床需求大大未得到满足。2,3 如图 1 所示,KRAS 的突变与 MAPK 家族中多种下游信号通路的激活有关,特别是 RAF – MEK – ERK 通路,它们对调节细胞存活和增殖至关重要。 1,4 RAS 蛋白起着分子开关的作用,在与鸟苷三磷酸 (GTP) 结合时处于活性开启状态,与与鸟苷二磷酸 (GDP) 结合时处于非活性关闭状态。5 这种开关受鸟苷酸交换因子和 GTPase 活化蛋白的调节,鸟苷酸交换因子促进 GDP 与 GTP 的交换,GTPase 活化蛋白增强 GTP 水解为 GDP。2 作为主要的鸟苷酸交换因子,Son of sevenless 1 (SOS1) 在 RAS 信号通路中起着至关重要的作用,它促进鸟苷酸交换并调节 KRAS 从“GDP 结合关闭状态”切换到“GTP 结合关闭状态”。
3 系统模块................................................................................................................................................ 8 3.1 CPU .......................................................................................................................................... 8 3.2 存储器.......................................................................................................................................... 8 3.2.1 ROM ............................................................................................................................................. 10 3.2.2 SRAM ............................................................................................................................................. 10 3.2.3 FLASH ............................................................................................................................................. 10 3.2.4 存储器地址映射 ............................................................................................................................. 10 3.3 引导和执行模式.................................................................................................................................... 11 3.3.1 镜像模式............................................................................................................................. 11 3.3.2 FLASH 模式............................................................................................................................. 11 3.3.3 引导加载程序............................................................................................................................. 11 3.4 电源、时钟和复位 (PCR)............................................................................................................. 12 3.5 电源管理(电源) ................................................................................................................... 12 3.6 低功耗特性 .................................................................................................................................... 14 3.6.1 工作和休眠状态 .......................................................................................................................... 14 3.6.1.1 正常状态 ............................................................................................................................. 14 3.6.1.2 时钟门控状态 ............................................................................................................................. 14 3.6.1.3 系统休眠状态 ............................................................................................................................. 14 3.6.1.4 系统关闭状态 ............................................................................................................................. 14 3.6.2 状态转换 ............................................................................................................................. 14 3.6.2.1 进入时钟门控状态和唤醒 ...................................................................................................... 14 3.6.2.2 进入睡眠/关闭状态和唤醒 .............................................................................................. 15 3.7 中断 ................................................................................................................................ 15 3.8 时钟管理 (CLOCK) ................................................................................................................ 16 3.9 IOMUX ........................................................................................................................... 17 3.10 GPIO ................................................................................................................................ 20
图 6:欠压保护时序图(高侧) Fig 6:Undervoltage protection sequence diagram (High side) b1 : 电源电压上升:当该电压上升到欠压恢复点,在下一个欠压信号被执行前该线路将启动运行。 b1: Power supply voltage rise: When the voltage rises to the undervoltage recovery point, the line will start running before the next undervoltage signal is executed. b2 : 正常运行 : MOSFET 导通并加载负载电流。 b2: Normal operation: MOSFET is turned on and load current is applied. b3 : 欠压检测 (UV BSD ) 。 b3: Undervoltage detection (UV BSD ). b4 : 不管输入是什么信号, MOSFET 都是关闭状态。 b4: No matter what signal is input, MOSFET is off. b5 : 欠压恢复 (UV BSR ) 。
辐射目标:• 在阻塞配置(处于供电反向偏置/关闭状态)下,重离子不会在辐射时引起永久性破坏效应,离子具有 40 MeV-cm 2 /mg 的硅等效表面入射线性能量转移 (LET),足以维持整个外延层的 LET 水平上升。
• 接触电阻在 1 分钟内迅速减小。然后在接下来的一个小时内逐渐减小。• 如果随后关闭开关并重复测试,则新的起始电阻会更低。• 如果关闭开关并保持关闭状态。下次打开时,接触电阻会再次升高。• 与 MEMS 开关的文献一致。• 注意:即使最高的接触电阻仍然相对较低(小于 2 欧姆)。