2025 年 1 月 7 日 — 救世军(仅限 FPL 客户)。3629 S. US Highway 1。佛罗里达州皮尔斯堡... Development Christian。中心。Glenview Court 9999。圣露西港。使徒...
这项研究的意义在于它可应用于电容谱法,这对于检查先进微电子和纳米电子中的介电/半导体界面至关重要。通过采用这些方法,我们可以准确测量界面处的陷阱电荷水平,这一参数对材料用作栅极介电体或存储器元件的可行性有重大影响。此外,电容-电压 (CV) 特性的控制对于超大规模集成电路 (VLSI) 的开发至关重要,在热场测试下评估栅极介电体的稳定性可以指示电压平坦区的变化,从而确保半导体器件的可靠性。
拓扑优化图1(a)描绘了TO的物理模型。拓扑设计空间由400×400×100 nm 3的矩形区域定义,这是测量1的较大电磁场模拟区域的一部分。1 µm×1。1 µm×600 nm。在设计空间下方放置了100 nm厚的SIO 2底物。使用具有高斯模式的R -CPL使用几乎薄的透镜(Na 0.25),以垂直角度将其定向到底物表面上。位于底物表面上的梁腰部在底物表面的直径为982 nm。波长为532 nm,距离基板的光源位于420 nm。tio 2被选为设计材料,其折射率为2。51185 + 0。01128 i在设计波长处,通过椭圆测量法对通过原子层沉积制备的118 nm厚的TIO 2膜进行了实验测量。有限差频域法被用作麦克斯韦求解器[17,40]。用4 nm cu-bic网格离散模拟区域,将最外面的五层分配为完美匹配的层,该层吸收了仿真空间内单个对象散射的电磁场。在TO框架内,配偶的介电函数桥接了设计材料E R和周围空气介质(E 0)的值,形成为E R = E 0 +ρ(E M-e 0)。在这里,设计变量ρ是连续的真实标量,范围为0至1。文献[16,40]中记录了TO的更多细节。我们的设计变量的初始值被设置为随机数字,均匀跨越0.5至0.7。我们采用了基于梯度的优化算法将设计值ρ向0或1驱动,其中ρ= 1的分布代表优化的结构。另外,为了鼓励设计变量的二线化,我们使用sigmoid函数实现了一种投影过滤方法。计算是在具有NVIDIA TESLA V100 SXM2(32 GB)的GPU节点上进行的。
堆叠电介质三材料圆柱栅极全包围 (SD-TM-CGAA) 无结 MOSFET 已被用于低功耗应用。本文介绍了堆叠电介质三材料圆柱栅极全包围 (SD-TM-CGAA) 无结 MOSFET 的亚阈值电流分析模型。分析结果与 TMSG MOSFET 进行了比较,获得了良好的一致性。该器件的亚阈值电流非常低,可以考虑实现 CMOS 反相器。设计了一个 PMOS 晶体管,并将 PMOS 晶体管的驱动电流与 NMOS 器件进行调谐,以获得驱动电流的理想匹配。设计了一个 CMOS 反相器。检查了器件的瞬态和直流行为。计算了 CMOS 反相器的功耗,并将其与 CMOS DMG-SOI JLT 反相器进行了比较。与 CMOS DMG-SOI JLT 反相器相比,所提出的器件的功耗降低了 5 倍。这表现出功率耗散的显著改善,这对于制造低功耗的未来一代设备非常有用。
摘要:近年来,碳纳米管(CNT)已作为材料出现,这些材料经常用于制备具有导电或高级介电特性的聚合物纳米复合材料,因为它们的独特特性(包括高温和电导率),包括高度和稳健的材料,具有很高的长度至直径比例。但是,在使用这些材料的聚合物纳米复合材料制备过程中,遇到了一些问题。主要问题之一是,在准备这些导电材料或将它们添加到聚合物中后,由于它们的导电结构,它们倾向于聚集,形成团聚。因此,在这项研究中,首先,多壁碳纳米管(MWCNT)用多苯胺(PANI)的导电形式(随后,聚(Dimethyl Siloxane)(PDMS)聚合物聚合物纳米复合膜功能化,具有不同浓度的多型多壁碳Nanotubes的浓度。然后,表征了膜的结构,形态,电和介电特性。仅添加了1.5%的PANI-CNT,在1 Hz时,PDMS的介电常数增加了47倍。此处介绍的介电膜可用于电容器,柔性电子,介电弹性体和人造肌肉应用。关键字:碳纳米管(CNTS),导电聚合物,介电,聚苯胺(PANI),聚合物纳米复合材料,聚(二甲基Siloxane)(PDMS)