1。引言大语模型(LLMS)[53,62]的最新进展改变了人类计算机相互作用的景观,促进了各个领域的创新应用的出现。很值得一提的是,许多曾经牵强的幻想逐渐成为切实的现实。在这项工作中,在最近的科幻小说中所设想的数字生命项目(DLP)一词被采用以构成我们的努力。哪些有资格成为数字生活?从心理角度来看,人类由内部心理过程(思想,例如思想)和外部行为组成[32]。从这个角度来看,我们的目标是利用LLM的精致能力来制作虚拟3D字符,这些字符模仿人类的全部心理过程,并与合成的3D身体运动进行多样化的互动。最近,Park等。引入了生成剂[42],以推动能够模拟人类样的AI剂。尽管取得了令人鼓舞的进步,但这项开创性的工作还是建立在许多简化互动的基础上:代理人以像素化的2D数字表示。共同体[73]旨在建立协作体现的AI,并包括3D代理。但是,3D代理人仍然受到一小部分动作的影响,并且没有表现出社交的能力。现有的作品因此忽略了精致的人类肢体语言的重要性,通过该语言传达了至关重要的信息[7,25,26]。在这里,运动匹配是现代 -此外,当前社会智能模型存在明显的缺陷。这一方面对于不仅模仿人类行为,而且具有人类的思维和情感反应的人物的范围至关重要,甚至具有促进长期关系的能力。为了达到DLP的愿望,我们介绍了一个由两个基本组成部分组成的框架。首先,这是一个精心设计的“数字大脑”,并在严格应用的心理原理中进行设计。利用LLM的紧急能力[40,53,66],大脑产生高级指示并计划角色的行为。值得注意的是,Sociomind从心理测试中引入了很少的射击典范,以形成人格建模的指导结构,在记忆反射过程中利用社会认知心理学理论,并设计了角色之间的谈判机制以进行故事进展。第二,介绍了Momat-mogen范式以解决交互式运动合成的“数字体”,该范例利用了运动匹配[12]和运动生成[76]的互补性质。
摘要:本文解决了香草视觉变压器中与多头自我注意(MHSA)相关的高计算/空间复杂性。为此,我们提出了层次MHSA(H-MHSA),这是一种新颖的方法,以层次的方式计算自我注意力。具体来说,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,提议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小斑块合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。终于,将本地和全球专注的特征汇总为具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此计算负载大大减少。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的环境关系。与H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明帽子网络在场景中的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象titection和实例分段。因此,HAT-NET为视觉变压器提供了新的视角。代码和预估计的模型可在https://github.com/yun-liu/hat-net上找到。
方法:组装了255名被诊断为晚期G/ GEJ腺癌的成年患者的数据集。将影响整体生存(OS)至显着程度的IRAE识别为候选变量,并将其整合为候选变量,以及其他12个候选变量。These included gender, age, Eastern cooperative oncology group performance status (ECOG PS) score, tumor stage, human epidermal growth factor receptor 2 (HER2) expression status, presence of peritoneal and liver metastases, year and line of anti-PD-1 treatment, neutrophil-to-lymphocyte ratio (NLR), controlling nutritional status (CONUT) score, and Charlson comorbidity index (CCI)。为了减轻与伊拉斯有关的时机偏见,采用了具有里程碑意义的分析。使用最小绝对收缩和选择算子(LASSO)回归进行了变量选择以查明明显的预测因子,并应用了方差障碍因子来解决多重共线性。随后,使用正向似然比方法进行了COX回归分析来开发生存预测模型,排除未能满足比例危害(PH)假设的变量。该模型是使用整个数据集开发的,然后通过Bootstrap重新采样进行内部验证,并通过另一家医院的同类进行外部验证。此外,创建了一个列图来描述预测模型。
基因组分析是许多微生物学研究人员日常工作的一部分。这些分析经常揭示以不确定功能编码蛋白质的基因,对于许多细菌物种,这些未知基因构成了其基因组编码序列的显着比例。由于这些基因没有定义的功能,因此在分析中通常会忽略它们。实验确定基因的功能可能具有挑战性;但是,生物信息学工具的持续进步,尤其是在蛋白质结构分析中,使得逐渐更容易地将功能分配给假设序列。利用各种互补工具和自动化管道来注释假设序列,最终可以增强我们对微生物功能的理解,并为新的实验室实验提供方向。
(Å) 3FNG Enoyl-[acyl-carrier-protein]reductase [NADH] 1,97 1N2B Pantothenate synthetase 1,70 1GSI Thymidylate kinase complexed with thymidine monophosphate (tmp) 1,60 1MRS Thymidylate kinase complexed with 5-ch2oh deoxyuridine monophosphate 2,00 1眼二氢蛋白酶合酶1 1,70 1SNF脱氧尿苷5-三磷酸盐核苷酸氢化素酶1,85 1SJN脱氧尿苷5-三磷酸核苷酸核苷酸水解酶1,80 1L1EL1EL1E型甲酸酯酸环烷酸酯酶合酶促成了促氧化氢蛋白酶素的素蛋白酶。
结果:最终分析中包括三个RCT(Keynote-671,Nadim II和Aeegean)。PIO group (neoadjuvant platinum-based chemotherapy plus perioperative immunotherapy) exhibited superior ef fi cacy in OS (hazard ratio [HR]: 0.63 [0.49-0.81]), EFS (HR: 0.61 [0.52, 0.72]), objective response rate (risk ratio [RR]: 2.21 [1.91, 2.54]), pathological complete response (RR:4.36 [3.04,6.25]),主要病理反应(RR:2.79 [2.25,3.46]),R0切除率(RR:1.13 [1.00,1.26])和辅助治疗速率(RR:1.08 [1.08 [1.01,1.15])与PP组(NeoAdjuvivant Plasity Plaser Plaser Plaser Planeboers plyoper plyoper plyoper plyoper)相比。在亚组分析中,EFS几乎在所有亚组中都倾向于PIO组。BMI(> 25),T阶段(IV),N阶段(N1-N2)和病理反应(具有病理完全反应)是PIO组的有利因素。在安全评估中,PIO组表现出更高的严重AE(28.96%比23.51%)和AES导致治疗中断(12.84%比5.81%)。同时,尽管总的不良事件,3-5级不良事件和致命的不良事件倾向于有利于PP组,但差异在统计学上并不显着。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。