截至 2013 年,威美亚平原的当前土地利用图被开发为 GIS 层,以在空间上汇总后续建模中的生产、利润和氮损失。需要对之前开发的 2010 年土地利用图进行更新,以提高其准确性,因为整个平原的土地利用似乎正在迅速向市场园艺转变。绘制土壤水力特性图,并选择合适的气候地点来代表威美亚平原,可以模拟灌溉用水需求和养分流失。因此,这些数据集指导了主要农场系统的选择,以用于建模目的。由于该项目专注于对灌溉的反应,因此这些农场系统仅限于灌溉选项。
生物炭研究的最新进展强调了其作为缓释肥料的潜力。虽然生物炭本质上具有肥料所需的养分有限,但最近的研究集中在养分中的养分中。这项创新旨在提高基于生物炭的肥料的营养供应和效率。生物炭颗粒在农业土壤中的应用可以显着改善土壤结构,保留水和养分的保留,从而提高农作物产量并减少对合成肥料的依赖。基于生物炭的缓慢释放肥料提供的延长营养物可用性解决了与常规化肥相关的营养损失和环境浸出的挑战。这种可持续的方法促进了土壤健康,并与循环经济原则保持一致。
保留在土壤的毛孔或空的空间中的水称为土壤溶液,是植物根部养分吸收的来源。13因此,土壤溶液中养分的浓度对于供应种植根部的养分至关重要。传统的土壤分析涉及复杂的方案,需要许多化学药品,昂贵的仪器和受过训练的人员,这是耗时的,并且可以根据所选方法产生不同的结果。7,14,15个研究人员一直在开发电化学和光学的现有土壤传感器,以测量化学特性。这些传感器监测土壤pH和单个离子(硝酸盐,磷酸盐和钾),但需要外部设备和电力。迄今为止,迄今为止,很少有可商购的便携式传感器用于分析土壤中的养分,这些传感器通常需要特定的c设备进行测量。18,19
高水平的致病线粒体DNA(mtDNA)变体导致严重的遗传疾病,并且这种突变体的积累也可能导致常见疾病。因此,选择这些突变体是线粒体医学的主要目标。尽管突变mtDNA可以随机漂移,但安装证据表明,主动力在对mtDNA变体的选择中起作用。潜在的机制开始被阐明,并且重新研究表明,包括燃料可用性在内的代谢线索有助于塑造mtDNA异质质。在病理MTDNA的背景下,养分代谢的重塑以有害的mtdnas支持线粒体,并使它们因复制性优势而超过功能变体。升高的养分需求代表了一个突变的跟腱,因为限制养分消耗或干扰养分的小分子可以清除有害mtdnas的细胞并恢复线粒体呼吸。这些进步预示着小型分子疗法的新时代对病理MTDNA的新时代。
在水位波动区(WLFZ)的流量中,氮(N)的养分水平和磷(P)在上覆的水中由于土壤养分的释放而膨胀,从而影响cynodon dactylon等植物的分解。然而,对这些营养变化对植物养分释放和水动力学的影响的研究有限,使对水质影响的准确评估复杂化。这项研究使用了8个具有不同初始养分水平的水样品来模拟WLFZ土壤养分引起的N和P变化,并检查了Cynodon dactylon的分解和养分动力学。的结果表明,量量显着增加了N和P的初始水平,尤其是作为颗粒氮(PN)和颗粒磷(PP),影响了水中的植物分解和营养动力学。60天后,Cynodon Dactylon损失了47.97%-56.01%干物质,43.58%-54.48%的总氮(TN)和14.28%-20.50.50%的总磷(TP)。初始PN和总溶解氮(TDN)促进了干物质损失,PN和PP促进了TP损失,而PN和PN和TDN抑制了TN损失。到第60天,在上面的水中,植物释放的N和PN或TP之间没有发现正相关。但是,初始PP和PN水平与TN和TP负相关,表明抑制作用。进一步的分析表明,从土壤中释放出的PN和PP支持微生物骨料的形成,增强了硝化和磷的去除,从而随着时间的推移改善了水纯化。
生物炭应用于农业和森林土壤,会影响土壤的生育能力和植物生产(第13章)。 植物生产力和土壤肥力直接受养分的影响,这是土壤环境中养分转化的产物。 生物炭也被称为生态系统C的持续形式,与其他修正案相比,它长期存在于土壤中(第11章)。 由于这些原因,对土壤的生物炭应用如何影响养分转化和植物的可用性,同时增加土壤生态系统中的净C储存。 尽管越来越多的证据表明,在各种自然和农业环境中,土壤中添加生物炭可能会增强植物的产量(Lehmann和Rondon,2006; Atkinson等,2010; Jeffery等,2011; Gao等,2019; Hossain等,2019; Hossain等,2020),对土壤营养的直接影响biochar of dimchar cychar cyclient cyclient生物炭应用于农业和森林土壤,会影响土壤的生育能力和植物生产(第13章)。植物生产力和土壤肥力直接受养分的影响,这是土壤环境中养分转化的产物。生物炭也被称为生态系统C的持续形式,与其他修正案相比,它长期存在于土壤中(第11章)。由于这些原因,对土壤的生物炭应用如何影响养分转化和植物的可用性,同时增加土壤生态系统中的净C储存。尽管越来越多的证据表明,在各种自然和农业环境中,土壤中添加生物炭可能会增强植物的产量(Lehmann和Rondon,2006; Atkinson等,2010; Jeffery等,2011; Gao等,2019; Hossain等,2019; Hossain等,2020),对土壤营养的直接影响biochar of dimchar cychar cyclient cyclient
水凝胶由于其独特的特性和不同的应用而成为现代农业中的一种有前途的技术。由交联的亲水性聚合物形成的这些三维结构具有高吸水能力,使其在维持植物的最佳水位中很有价值(Azeem等,2023)。水凝胶可以提高用水效率,降低灌溉成本并提高植物的养分利用率,最终导致农作物产量提高(Oladosu等,2022)。此外,它们可以充当干燥土壤中水的水库,有可能减少频繁灌溉的需求(Louf等,2021)。农业中的水凝胶的使用扩展到各种应用,例如保留土壤饮水,养分,养分和养分和农药,种子涂料,种子涂料,含量控制,甚至是patra Additives(patra and Additives),以及2022222222222222222222。这些应用突出了水凝胶在应对现代农业面临的多重挑战方面的多功能性。此外,正在基于淀粉,壳聚糖和纤维素等天然材料的水凝胶以生物兼容性,无毒性和保留水分的特性探索(Uysal,2024; Li et al。,2022)。并提高了农作物的产量(Vahabi,2023年)。水凝胶的受控释放性能使它们有效地向植物输送水和养分,从而有助于可持续的灌溉实践(Prakash等,2021)。此外,已经证明了水凝胶可节省水含量,减少养分消耗,减轻农作物中的水分压力以及控制植物病原体,展示了它们具有可持续的植物保护潜力和增强的作物产量(Elshafie&Camele,2021年)。现代农业中水凝胶的利用提供了一系列好处,例如改善水管理,增强营养递送和提高农作物生产力。通过利用水凝胶的独特特性,农民可以优化资源利用,减轻环境影响并为农业实践的可持续性做出贡献。
步骤 1:确定土壤类型 - USDA 网络土壤调查步骤 2:土壤测试 – 确定哪些养分已经存在以及哪些需要添加。测试实验室。步骤 3:作物需求 – 了解作物的具体养分需求。UCCE 为大多数作物提供施肥指南。步骤 4:肥料选择 – 根据养分缺乏情况和作物需求选择合适的肥料类型。UCCE 会根据您的信息提供施肥建议。步骤 5。施用率:确定施用多少肥料。UCCE 有基于多年研究的指南。步骤 6:施用时间 – 安排施用时间以配合作物的关键生长阶段。UCCE 可协助确定何时施用。步骤 7:监测和调整 – 定期评估作物表现和土壤健康状况,以根据需要调整计划。
农业部门占全球国内生产总值的三分之一左右。然而,人口增长趋势导致粮食需求量增加。土壤质量、养分供应、环境条件以及土壤的生物健康是提高单位面积作物产量以实现粮食安全目标的重要标准,尽管化学肥料的养分含量高,能够加快作物的生长速度,但大量使用化学肥料也被证明会对土壤质量、土壤养分、水、环境以及最终的植物和人类健康产生有害影响。生物肥料是这些肥料的替代品,由于其具有环保、经济高效和易于在农业领域应用等特点,如今应运而生。生物肥料是一批多样化的微生物,即使在非生物胁迫条件下,也可以促进植物生长和土壤健康。所有这些都使它们在可持续农业中变得越来越重要。在大多数农业系统中,氮通常是决定作物产量的限制性养分;这就是为什么从多个角度讨论了增强氮营养和增强磷营养的生物肥料。本研究旨在探索微生物生物肥料在农业应用和粮食安全整体解决方案的潜力和前景。
引言肯尼亚大部分地区土壤养分供应不足,土壤结构不良,这些都是农业可持续发展的主要制约因素。土壤中植物养分的主要来源包括化学肥料和有机肥料。有机肥料主要来自农业废弃物和动物粪便等各种来源。在现有的许多有机肥料中,沼液尚未充分利用作为肥料,但它通过提供养分具有提高土壤生产力和作物产量的巨大潜力[14]沼液是沼气厂厌氧分解的副产品。加入沼气池的牛粪和农业废弃物中的有机废物在分解过程中转化为无机形式,使它们更易于被植物吸收,从而有助于提高作物产量和土壤肥力[8]。合理利用沼液可以减少许多农民对增加昂贵化学肥料的依赖,因为沼液中含有 20-30%