SEGGER 的高性能实时操作系统 embOS-Ultra 也已支持 STM32C0 系列。它使用循环分辨率计 时,提供更高的精度和时间分辨率。使用 embOS-Ultra 可提高性能并节省功耗,它还为应用 程序提供了可同时使用基于周期和基于微秒的计时选项。 API 与 embOS 完全兼容,使迁移变 得简单,无需更改应用程序,并保持 embOS 行为。 embOS-Ultra 只是在使用新的附加 API 调 用时提供循环计时,不用在两者之间做出选择。了解 embOS-Ultra ,可以点击文章: embOS- Ultra :高分辨率系统时间
摘要 — 近年来,硅光子学引起了越来越多的关注,主要用于微电子电路或生物传感应用中的光通信光互连。主要在绝缘体上硅平台上制造的用于 CMOS 兼容制造的基本无源和有源元件(包括探测器和调制器)的开发已达到如此高的性能水平,以至于应该解决硅光子学与微电子电路的集成挑战。由于晶体硅只能从另一个硅晶体中生长,因此无法在这种状态下沉积,因此光学器件通常仅限于单层。另一种方法是使用后端 CMOS 制造工艺在 CMOS 芯片上方集成光子层。本文讨论了用于此目的的各种材料,包括氮化硅、非晶硅和多晶硅。关键词 — 硅光子学、CMOS、集成。
生成的AI(Genai)标志着AI从能够“识别”到AI的转变,可以“生成”各种任务的解决方案。随着生成的解决方案和应用变得越来越复杂和多方面,新颖的需求,目标和可能性已出现以解释性(XAI)。在这项工作中,我们阐述了Xai为何在Genai的兴起及其在解释性研究中的挑战中变得重要。我们还揭露了解释应该实现的小说和新兴的逃避者,例如验证能力,互动性,安全性和成本方面。为此,我们专注于调查现有作品。此外,我们提供了相关维度的分类法,使我们能够更好地表征Genai的现有XAI机制和方法。我们讨论了不同的途径,以确保XAI,从培训数据到提示。我们的论文为非技术读者提供了Genai的简短而简洁的技术背景,重点介绍了文本和图像,以更好地了解Genai的新颖或改编的XAI技术。但是,由于Genai的大量作品,我们决定放弃与解释的评估和使用相关的XAI的详细方面。因此,手稿既利益,都以技术为导向的人和其他学科,例如社会科学家和信息系统研究人员。我们的研究路线图为未来的研究提供了十个以上的方向。
大多数现有的可再生能源支持方案扭曲位置和调度决策。许多人对开发人员施加不必要的风险,增加了支持成本。有效的策略设置合适的碳价格,支持容量不输出,并确保有效的调度和位置。欧盟禁止优先派遣并需要基于市场的招标,但没有解决基本的问题,即付款是有条件的,这是有条件的,从而增加了在风/阳光地点定位的激励措施。本文确定了各种扭曲,并提出了一个拍卖的合同,以解决位置和调度扭曲的合同:差额的财务保费合同(PCFD),其每小时合同的数量与本地可再生能源输出/MW成正比,并在MWH/MW中指定的寿命,反映了与批发价格的校正差异。此标准PCFD提供有效的调度,可确保但限制了总补贴,而不是过度迎接大风/阳光地点。收入保证允许高债务:股权,大大降低补贴成本。参考详细信息
摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
FM8502 是一款工作在电感电流临界模式的高精度降压型 LED 恒流驱动芯片,芯片内部集成 500V 功率开关且 具有 OVP 电压调节功能,可通过调节外置 OVP 电阻阻值来设置 Vovp 电压值,另外,芯片 ROVP 引脚带 Enable 功能,可兼容开关调色应用。 FM8502 内置了高精度的采样、补偿电路和高压 JFET 供电技术,无需启动电阻和 VCC 电容,使得系统外围十分简单,在实现高精度恒流控制的前提下,最大限度的节约了系统成本和体积,可 广泛应用于 LED 球泡灯、 LED 蜡烛灯、 LED 日光灯管及其它非隔离降压型 LED 照明驱动领域。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
*Corpsontding作者:Michele Ortolani,生命中心Nano&Neuro Science,意大利理工学院,Viale Regina Elena 291,00161,意大利罗马;和物理系“ Sapienza”罗马大学,Piazzale Aldo Moro 2,00185,意大利罗马,电子邮件:michele.ortolani@roma@roma1.infn.it。https://orcid.org/0000-0002-7203-5355 Elena运动,Enrico Talamas Simola,Gaspare的Luciana和大学科学系Monica de Seta;在罗马研究中,Viale G. Marconi 446,罗马00146,意大利,电子邮件:elena.campagna@uniroma3.it(E。竞选),Enrico.talamassimola@uniroma@uniroma@uniroma3.it(E。Talamas Simola)。https://orcid.org/0000-0001-7121-8806(E.广告系列)。 https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。https://orcid.org/0000-0001-7121-8806(E.广告系列)。https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。
1。Zho,J.H。; Rossi,J。Nat。 修订版 Discov。 2017,16,(3),181-202。 2。 我们,s。; Z. Pan,Y。;是的,y。 li,f。; Liu,J。; Wang,L。; Wu,X。;仪式。; Wan,Y。;张,L。; Yang,Z。;张,B.-T。; lu,a。;张,G。Acs苹果。 mater。 接口2021,13,(8),9500-9519。 3。 Hollen,M。Curr。 opine。 化学。 大。 2019,52,93-101; Freed,n。; Fürst,M。J. J.;希望,P。Current。 opine。 生物技术。 2022,74,129-136; Huang,P.J。; Liu,J。W. 2020,9,(10),1046-1 4。 Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-5 5。 ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。 化学。 正面。 2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。 化学。 他们。 ed。 2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y. ; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。 大。 2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。 ther。 尼西亚采集Zho,J.H。; Rossi,J。Nat。修订版Discov。2017,16,(3),181-202。2。我们,s。; Z. Pan,Y。;是的,y。 li,f。; Liu,J。; Wang,L。; Wu,X。;仪式。; Wan,Y。;张,L。; Yang,Z。;张,B.-T。; lu,a。;张,G。Acs苹果。mater。接口2021,13,(8),9500-9519。3。Hollen,M。Curr。opine。化学。大。2019,52,93-101; Freed,n。; Fürst,M。J. J.;希望,P。Current。opine。生物技术。2022,74,129-136; Huang,P.J。; Liu,J。W. 2020,9,(10),1046-14。Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-5 5。 ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。 化学。 正面。 2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。 化学。 他们。 ed。 2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y. ; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。 大。 2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。 ther。 尼西亚采集Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-55。ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。化学。正面。2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。化学。他们。ed。2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y.; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。大。2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。ther。尼西亚采集
6.1 绝对最大额定值 ...................................................... 5 6.2 ESD 额定值 .............................................................. 5 6.3 建议工作条件 .............................................................. 5 6.4 热信息 ...................................................................... 5 6.5 电气特性 ...................................................................... 6 6.6 开关特性 ...................................................................... 7 6.7 双线接口时序 ............................................................. 7 6.8 时序图 ...................................................................... 8 6.9 典型特性 ...................................................................... 8