保持可持续性,材料必须丰富,便宜且无毒。毒性并不是唯一的安全问题。由于锂离子电池的易燃性引起的事件经常在媒体中报道。这些设备的易燃性通常与非水电解质有关。电解质也有助于毒性和高成本,部分原因是使用氟化盐。[2-5]解决这些缺陷对于钠离子蝙蝠特别是至关重要的,因为可持续性和安全性至关重要。幸运的是,有一个动力来解决电池中使用的电解质的易燃性质。减轻易燃性的一种常见策略是将有机磷化合物用作电解质溶剂。[6-12]有机磷化合物是多种应用中使用的常见火焰阻燃剂。[13]但是,其中几种化合物对环境和健康有负面影响。[14,15]
可以通过安装由控制(主)和备用CPU组成的双控制系统来实现多级冗余系统。与冗余扩展基本单元和CC-Link IE场地网络的冗余扩展基本单元和网络电缆的双重扩展电缆拓扑结合在一起,可以将单点故障的风险最小化。在线更换电缆和模块(热扫)是可能的,而在发生错误时会连续操作系统,从而迅速进行故障排除。
摘要:锂(LI)金属固态电池具有高能量密度和改进的安全性,因此被认为是传统锂离子电池的有前途的替代品。在实践中,使用Li Metal Anodes仍然具有挑战性,因为缺乏超级离子固体电解质,该电解质具有良好的稳定性,可抵抗阳极侧的还原分解。在这里,我们提出了一种具有反式结构(与常规无机结构相比)的新电解质设计,以实现使用LI金属阳极的固有热力学稳定性。li-富含抗氟酸盐的固体电解质的高离子电导率为2.1×10-4 s cm-1,具有三维快速的锂离子传输途径,并显示出Li-li-li-li-li对称炮台的高稳定性。还提供了带有Li金属阳极和LiCoo 2阴极的可逆全细胞,显示了富含Li的抗氟氟氟二氟二氧化碳作为LI金属兼容的固体电解质对高能密度固态电池的潜力。■简介
摘要 算法系统和人工智能在新闻制作中的日益普及引发了人们对记者是否有能力以不违背新闻规范和价值观的方式理解和使用它们的能力的担忧。这种“可理解性”问题对于公共服务媒体来说尤其严重,因为这种复杂而不透明的系统可能会扰乱问责制、决策和专业判断。本文通过文件分析和对 14 名记者的访谈,概述了人工智能在 BBC 新闻制作中的部署,并分析了记者如何理解人工智能和算法。我们发现日益普及的人工智能与 BBC 记者的理解水平之间存在脱节,他们用猜测和想象来代替对这些技术的准确概念。这可能会限制记者有效和负责任地使用人工智能系统的能力,质疑其产出和在新闻制作中的作用,或者适应和塑造它们,也可能妨碍对人工智能如何影响社会进行负责任的报道。我们建议 PSM 在个人、组织和社区三个层面制定促进人工智能可理解性和素养的策略,并且我们从社会文化角度而不是单纯的技术角度重新定义人工智能可理解性问题,以便更好地解决规范性考虑。
由此类坠机事件引起的第三方责任诉讼。美国国家运输安全委员会 (NTSB) 负责调查绝大多数涉及诉讼的事故和事件。该委员会既会识别和观察速度、角度、天气和设备状况等客观数据,也会识别和观察设计错误、维护错误、通讯错误以及导致飞机失事的各种人为行为等主观证据或意见证据。此类公开、专业且理论上中立的证据对于诉讼当事人、法官和陪审团在解决第三方诉讼时似乎至关重要。然而,由于相关法规以及 NTSB 为限制其参与第三方诉讼而发布的隔离条例,在这种案件中,NTSB 的工作成果很少被采纳为证据。此外,由于证据收集和提供方式的原因,可能被采纳的证据也可能不被采纳。
进口占该国消耗的大量电力(Eswatini,2018a政府; ISS African Futures,2023)。保守性估计表明,埃斯瓦蒂尼(Eswatini)从南非的埃斯科姆(Eskom)和莫桑比克(Mozambique)的莫桑比克(Electricidade deMoçambique)(非洲开发银行,2021年;莫桑比克俱乐部; 2022年; Eswatini,2023年),其他近似近似近似于南非,莫桑比克政府(2022年)进口了60%-80%的能源供应。这使得能源安全成为该国的重大关注点,尤其是当与南非四面楚歌的电力公用事业的目前迭代将于明年到期(Pachymuthu,2022年)。在2022年,电力是Eswatini(OEC World,2024)的第三大进口产品。
多波段传输是应付对光学通讯网络能力不断增长的需求而不改变现有纤维基础的不断增长的重要解决方案之一。然而,超宽带的通信需要开发新型的电力效率光学放大器以外的C和L波段,这是引入开创性Erbium掺杂的光纤的主要研究和技术挑战,这些挑战构成了极大地改变光学通信部门的启用。可用于开发此类放大器的几种类型的光纤维,特别是掺有新近岛,praseodymium,thulium和Bismuth的纤维。但是,在其中,双载纤维是最有前途的放大介质特别感兴趣的,因为与其他培养基不同,不同的双重相关的活性中心可以在700 nm(1100-1800 nm)的巨大总宽度(1100-1800 nm)的巨大带中放大。可以通过使用不同的宿主材料(例如铝硅酸盐,磷硅酸盐,二氧化硅和日耳曼硅酸盐玻璃杯)获得这种光谱覆盖范围。在这里,我们报告了一种新型的双型光纤放大器,具有记录特征用于电子波段扩增的特征,包括迄今为止报道的电信兼容的E波段放大器的功率转换效率最高。此需要型掺杂的纤维放大器(BDFA)的最大增益为39.8 dB,最小噪声图为4.6 dB,启用了173 m Bi-bi-bi-bi-bi-doped的纤维长度。最大实现的功率转化效率为38%高于L波段ER掺杂纤维放大器的功率。©2024作者。这种表现表明了BDFA成为现代多波段光学通信网络中首选放大器的高潜力。所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0187069
经济增长能否改善人类的命运取决于具体条件。我们重点研究日本。20 世纪 90 年代,日本从经济高速增长、福利停滞的模式,转变为经济温和增长、福利不断提高的模式。我们讨论同期的政策改革,分析福利的变化。特别是,我们评估了福利提高的相关因素是否与改革预期一致。我们将 Blinder-Oaxaca 分解法应用于世界价值观调查数据。结果表明,老年人、父母和妇女(改革的主要目标群体)的生活条件的改善与福利提高相关。这一证据与社会安全网可以使经济增长与福利持续提高相兼容的假设一致。
摘要:fMRI 环境中最常见的反馈显示是视觉的,例如,参与者试图增加或减少温度计的水平。然而,触觉反馈在计算机交互任务中越来越受到重视,尤其是实时 fMRI 反馈。fMRI 神经反馈是一种尚未利用这一趋势的临床干预。在这里,我们描述了一种低成本、用户友好、与 MR 兼容的系统,该系统可以在 fMRI 神经反馈的初始应用中提供分级触觉振动刺激。我们还进行了可行性演示,表明我们可以在神经反馈范式的背景下成功设置系统并获取数据。我们得出结论,使用这种低成本系统进行振动触觉刺激是一种可行的反馈呈现方法,并鼓励神经反馈研究人员将这种类型的反馈纳入他们的研究中。