•专注于改进和机构发展的适应性领导风格。这种领导方式的关键组成部分是与团队合作设计策略并评估和分享成果。教务长必须确保同情,尊严和尊重。优先事项包括创建提供学术领导,监督和管理的环境。教务长负责大学所有学术领域的成功运作。该领导者将成为所有具有内部和外部利益相关者的学术领域的倡导者。•公平,诚实和对不同观点的接受能力有效的沟通技巧。理想的候选人将具有透明的沟通技巧,以促进教职员工和学生人数的积极合作。教务长将反映出听众,演讲者和合作者的高能量,热情,主动性和组织。它将需要与总统和其他执行领导人的特殊关系,以取得卓越的沟通结果。•支持学生的成功和参与。教务长将促进对所有学生的接受和支持的氛围,创造一个吸引本科生和研究生的校园环境。与入学团队,学生生活领袖和运动领导者一起工作将很重要,以最大程度地提高招聘和保留。
The Honorable Mike Lee The Honorable Martin Heinrich Chairman Ranking Member Senate Committee on Energy and Natural Resources Senate Committee on Energy and Natural Resources 304 Dirksen Senate Building 304 Dirksen Senate Building Washington, DC 20510 Washington, DC 20510 Dear Chairman Lee and Ranking Member Heinrich: On behalf of the Outdoor Recreation Roundtable (ORR), we express our strong support for the nomination of Governor道格·伯古姆(Doug Burgum)将成为内政部的下一任秘书。州长Burgum对户外休闲,户外娱乐经济的支持历史以及对公共土地和水域的保护使他的领导者对政府和部门至关重要。我们很高兴与州长及其员工合作,尤其是去年他宣布建立北达科他州户外娱乐办公室的公告。州长Burgum已表现出致力于支持户外娱乐的经济驱动力和有意义的社区方式的承诺。作为一个狂热的户外运动员,他狩猎,雪地摩托,帆,滑雪,骑马,旁边等等,我们希望州长长期钦佩泰迪·罗斯福(Teddy Roosevelt),对商业的复杂理解,对公共私人伙伴关系的承诺将有助于支持和发展其邻国,并在其邻近的国家中受益匪浅,并在各个国家中受益匪浅。ORR是国家领先的户外休闲协会联盟,代表了娱乐经济中超过110,000个户外业务以及与室外相关活动的全部范围。美国商务部的最新数据表明,户外娱乐在2023年产生了1.2万亿美元和500万个美国工作岗位,占美国经济的2.3%,占该国所有员工的3.1%。对我们公共土地和水域的需求和影响正在增长,包括增加探视,基础设施需求,维护积压以及极端天气和自然灾害的影响。需要创新的解决方案来管理我们的公共土地和水域面临的许多挑战,而伯古姆州长则可以帮助与国会伙伴和ORR成员一起领导这项努力。我们感谢内政部的长期传统,以支持娱乐活动,并为每个人提供更多机会进入户外活动以及构成我们部门的许多活动。与参议院能源和自然资源委员会成员一起,我们的业务和协会强烈支持了不断扩大的公共土地户外娱乐经验(Explore)法案,该法案最近被签署为法律。本法律将为围绕户外娱乐,基础设施,许可以及与户外娱乐相交的许多其他领域建立现代化部门的政策。我们感谢委员会对这项倡议的领导,并期待与伯古姆州长及其团队合作实施这项历史性法律。也有重大的政策问题,最终将由下一任内政部长并由您的委员会考虑,包括重新授权传统修复基金。我们赞赏与该户外娱乐的立法事务委员会建立了两党的关系,我们有信心与下一任内政部长也是如此。确保正确的政策将支持我们的行业,该行业的增长速度超过了国民经济,并对全国各地的当地社区和人民产生了积极影响。
•日历管理:维护和组织首席执行官的时间表,以确保会议和约会的无缝协调。☐•沟通管理:处理首席执行官的所有通信和通信,以确保没有忽略细节。☐•联络角色:充当首席执行官和各个部门之间的桥梁,促进有效的信息流。☐•旅行:安排国内和国际旅行,管理所有物流和费用索赔和发票。准备在短时间内旅行。☐•文档:草案报告,记录,创建演示文稿,跟进会议记录并精确监督合同。☐
addorffromgtf。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 AnalyzeCPC2。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 AnalyzitedEepSploc2。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 12分析的动物immmm。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 14 Analyzeiprepred2a。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>10 AnalyzitedEepSploc2。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12分析的动物immmm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 Analyzeiprepred2a。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16个分析集和 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22个分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25分析帕姆。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>29分析选举。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>32分析写作 - 序列。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。34创建WitchanalyPerister。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43审查中。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47 extractcesquencequenceenrichment。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 extracsquencenrichmentComparison。。。。。。。。。。。。。。。。。。。。。。。。51 extractquencequencegenome在整个环境中。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 extractcessemquencesummary。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 extractgeneexpression。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。59提取序列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61提取物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65提取物质量分析。。。。。。。。。。。。。。。。。。。。。。。。。。。68 eTucterSplicingGenomeome在范围内。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。70提取物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。73提取物塑料。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。76 extractswitchoverlap。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。77 extractswitchsummary。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79个提取物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。81 ImportCufflinkSfiles。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>83 ImportDftf。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>87 div>
I. 引言 在与计算机交谈时,我们试图模仿人类的互动。试图理解计算机是如何编写脚本来说话的——这只会导致挫败感。相反,如果计算机能像我们一样交流,那会很容易。使之成为可能的技术是对话式人工智能。由于计算机语言和人类之间的差距被弥合,两者之间可以轻松自然地交流。对话式人工智能是一套识别人类语言的技术。不同的语言也被解读、理解并确定正确的反应。它还模仿人类的对话。各种企业很快就意识到对聊天机器人和其他自动化软件的需求。从自动化简单的通信和客户服务,到降低各种成本和提供对话交易的平台,客户可以通过聊天机器人提供的多种方法得到满足。聊天机器人允许全天候客户服务,不断与多个用户互动并为他们的查询提供答案。人们不喜欢等待他们的回复。他们希望公司立即做出快速回应,而这只能通过对话式人工智能来实现。如果客户没有立即得到回复,可能会导致他们放弃在线购买。对更快客户服务的需求已经增加。各大品牌已经开始实施对话式人工智能来满足这一需求。聊天机器人分为两类。基于规则的聊天机器人和基于智能机器学习的聊天机器人。在基于规则的方法中,程序员将为系统编写规则。在机器学习方法中,需要大量的流媒体信息来训练算法本身。因此,程序员需要正确定义机器学习的参数。许多语音助手允许用户用语音交流,这些助手是由谷歌、苹果和亚马逊等知名公司开发的,但也存在一些安全风险。因此,有必要确保采取适当的安全措施。需要一个替代系统才能真正有效并使业务流程自动化。整个业务流程可以通过称为人工智能聊天机器人应用系统的高级对话系统实现自动化。因此,聊天机器人应用程序必须包含自然语言处理 (NLP)、深度神经网络 (DRN),以便轻松理解客户的查询。在服务行业中,聊天机器人可用于满足客户查询,回答不需要人类专业知识的基本问题,还可以让客户轻松购买。人工智能聊天机器人可以比人类更准确地分析数据。它准确地预测查询的答案,从而满足客户的需求,并提供易用性和适当的隐私。
摘要 本研究评估了对话式人工智能 (CAI) 在纠正认知偏差和识别人机交互中的情感方面的有效性,这对于数字心理健康干预至关重要。认知偏差——系统性偏离规范思维——会影响心理健康,加剧抑郁和焦虑等状况。治疗聊天机器人可以使认知行为疗法 (CBT) 更易于获得且更实惠,提供可扩展和即时的支持。该研究采用结构化方法,使用基于临床的虚拟案例场景模拟典型的用户-机器人交互。在两类认知偏差中评估了表现和情感识别:心智理论偏差(人工智能拟人化、对人工智能的过度信任、归因于人工智能)和自主性偏差(控制错觉、基本归因错误、公正世界假设)。使用定性反馈机制和序数量表来量化基于准确性、治疗质量和对 CBT 原则的遵守情况的反应。通过脚本交互评估治疗机器人(Wysa、Youper)和通用 LLM(GTP 3.5、GTP 4、Gemini Pro),由认知科学家和临床心理学家双重审查。统计分析表明,治疗机器人在偏见纠正方面始终优于非治疗机器人,并且在 6 种情感识别偏见中有 4 种表现出色。数据表明,非治疗聊天机器人在解决某些认知偏见方面更有效。关键词:认知偏见、对话式人工智能、聊天机器人、数字心理健康、偏见纠正、情感识别 * 通讯作者。电子邮件:marcin.rzadeczka@umcs.pl,邮寄地址:Wydział Filozofii i Socjologii UMCS, pl。Marii Curie-Skłodowskiej 4, pok。204, 20-031 卢布林数据和协议:https://data.mendeley.com/datasets/h2xn2bxz5r/1 预印本 doi:https://doi.org/10.48550/arXiv.2406.13813