简介。作为物理和计算机科学领域的前沿主题,量子信息科学通常是一个迅速发展且价值高度的研究领域,在计算中广泛应用[1-4],数据科学和机器学习[5,6],通信[7-13]和Sensing [14 - 16]。在不久的将来,量子组合可能会给某些特定算法带来重要的优势。量子通信将严格构成数据安全性和隐私性,根据物理定律提高传输效率;量子传感可能会显着提高测量精度。量子数据的产生,处理和应用以及这些数据的处理以及其经典同行目前正在挑战量子科学中的口头和实验性问题。在本文中,我们提出了所谓的量子数据中心(QDC)的概念,这是一个统一的概念,指的是某些特定的量子硬件,可以有效地处理量子数据,并将提供经典数据和量子处理器之间的效率界面。提出的QDC的关键组件是量子随机存储器(QRAM)[17-25],该设备允许用户从数据库中访问叠加中的多个不同元素(可以是经典或量子)。至少,QDC由QRAM组成,该QRAM耦合到量子网络。我们构建了与原始应用相关的QDC理论。我们提出了示例的明确构造,包括:QDC作为易于故障的量子计算中数据查找的实现; QDC作为所谓的多方私人Quantum沟通的介体(下面定义),该通信结合了量子私人查询(QPQ)[26]和量子
摘要:近年来,内存计算 (CIM) 得到了广泛研究,通过减少数据移动来提高计算的能效。目前,CIM 经常用于数据密集型计算。数据密集型计算应用,例如机器学习 (ML) 中的各种神经网络 (NN),被视为“软”计算任务。“软”计算任务是可以容忍低计算精度且准确度损失较小的计算。然而,针对数值计算的“硬”任务需要高精度计算,同时也伴随着能效问题。数值计算存在于许多应用中,包括偏微分方程 (PDE) 和大规模矩阵乘法。因此,有必要研究用于数值计算的 CIM。本文回顾了用于数值计算的 CIM 的最新发展。详细推导了求解偏微分方程的不同种类的数值方法和矩阵的变换。本文还讨论了对数值计算效率影响很大的大规模矩阵的迭代计算问题,重点介绍了基于ReRAM的偏微分方程求解器的工作过程,并总结了其他PDE求解器以及CIM在数值计算中的研究进展,最后对高精度CIM在数值计算中的应用前景和未来进行了展望。
首字母缩略词 定义 政府 GPU 图形处理单元 GRC NASA 格伦研究中心 GSFC 戈达德太空飞行中心 GSN 目标结构化表示法 GTH/GTY 收发器类型 HALT 高加速寿命试验 HAST 高加速压力试验 HBM 高带宽存储器 HDIO 高密度数字输入/输出 HDR 高动态范围 HiREV 高可靠性虚拟电子中心 HMC 混合存储立方体 HP 实验室 惠普实验室 HPIO 高性能输入/输出 HPS 高压钠 HUPTI 汉普顿大学质子治疗研究所 I/F 接口 I/O 输入/输出 I2C 集成电路间 i2MOS Microsemi 第二代抗辐射 MOSFET IC 集成电路 IC 集成电路 I-Cache 独立缓存 IUCF 印第安纳大学回旋加速器设施 JFAC 联合联邦保证中心 JPEG 联合图像专家组
基于数值优化的实现实际设备门和参数,我们研究了相位频率(重复)代码的性能,该代码在载有单粒细胞量子量子的线性芯片(GAAS)量子点的线性阵列上。我们首先使用电路级别和现象学噪声的简单误差模型来检查代码的预期性能,例如,报告的电路级去极化噪声阈值约为3%。然后,我们使用最大样本和最小匹配的解码器进行密度 - 矩阵模拟,以研究实现真实设备的消除,读出误差以及准危机以及快速门噪声的效果。考虑到量子读数误差与dephasing时间(t 2)之间的权衡,我们确定了位于实验范围内的相位闪光代码的子阈值区域。
工作存储器,即最典型的动态随机存取存储器(DRAM),一般位于物理上独立的芯片上,因此会导致数据密集型任务的长延迟和能耗。与人脑类似,内存计算(IMC)在合适的内存电路内就地进行数据处理。[8]IMC 抑制了内存中数据/程序提取和输出结果上传的延迟,从而解决了传统计算机的内存(或冯·诺依曼)瓶颈。IMC 的另一个关键优势是高度计算并行性,这要归功于内存阵列的特殊架构,其中计算可以同时沿着多个电流路径进行。IMC 还受益于计算设备的内存阵列的高密度,这些计算设备通常具有出色的可扩展性和 3D 集成能力。最后,模拟计算由存储器电路的物理定律支持,例如乘积的欧姆定律和电流总和的基尔霍夫定律[8-11],以及其他特定于存储器的物理行为,如非线性阈值型开关、脉冲累积和时间测量。[12-15] 由于原位、高密度、并行、物理和模拟数据处理的结合,IMC 成为人工智能和大数据框架内最有前途的新计算方法之一。
摘要:在过去的二十年中,研究人员一直在探索与碳纳米管(CNT)合并形状内存聚合物(SMP)的潜在好处。通过将CNT作为SMP中的加固,它们的目的是提高机械性能并提高形状固定性。然而,CNT的显着内在特性也为驱动机制(包括电 - 热反应)开辟了新的途径。这为开发软驱动器的可能性开辟了可能性,这些动力器可能会导致组织工程和软机器人技术等领域的技术进步。SMP/CNT复合材料提供了许多优势,包括快速驱动,遥控,挑战性环境中的性能,复杂的形状变形和多功能性。本综述提供了过去几年对具有热固性和热液基质的SMP/CNT复合材料进行的研究的深入概述,重点是CNT对纳米复合材料对外部刺激的反应的独特贡献。
图1(a)研究访问。(b)使用Sigmoidal拟合(D)示意图(d)在DLPFC中的九个区域(ROI)和LPC中的八个ROI的单个试验(C)设置大小的任务示意图,用作潜在的TMS目标(颜色代表与哈佛牛津的颜色不同)。(e)结合DWI和fMRI的靶向方法的例证。(f)用于定义刺激目标并在每个TMS访问上输入的随机表。(g)。RTMS参数RTMS参数