线粒体疾病是一组由线粒体功能障碍引起的罕见疾病。它们通常是线粒体 DNA 或核 DNA 突变的结果。tRNALeu 中的 A3243G 转换是线粒体 DNA 最常见的突变之一。这种突变的表型表达各不相同。最广为人知的表型是线粒体脑肌病、乳酸性酸中毒和中风样发作 (MELAS) 综合征。这种突变导致的呼吸肌无力的孤立性肌病很少见。作者报道了一名 20 岁的亚洲女性,她出现了暴发性低通气性呼吸衰竭,并伴有四肢轻度无力。电生理学研究显示肌病的证据。肺功能测试证实了肺部的限制性生理。Gomori 三色和琥珀酸脱氢酶染色证实了线粒体的肌膜下积聚。基因研究发现外周血线粒体DNA存在A3243G突变。严重影响呼吸肌的孤立性线粒体肌病可视为A3243G线粒体疾病的一种罕见临床表现。
拥有大约35,000种描述的物种,Scarabaeoidea是最大的甲虫超家族之一,包括多样化和受欢迎的群体,例如粪甲虫,鹿肉甲虫,六月甲虫,花奶酪,花香糖和犀牛。在化石记录中表现得很好,自侏罗纪以来就已经存在。它们是共生的,死亡的,植物的,腐生的和木质的,有些甚至是食肉。一些物种与人类竞争资源,被认为是严重的害虫,例如在棕榈中发展的日本甲虫和犀牛甲虫;其他人非常有益,例如甲虫,可以改善土壤质量和植物的生长。具有高度多样性的生态需求,全球分布和巨大的物种多样性,因此,甲壳虫是一个流行的研究目标,涵盖了从化学生态学到分类学和害虫控制的学科。本期特刊将展示Scarabaeoid研究的这些不同方面,特别关注分类法和多样性的各个方面。您可以选择我们的分类学共同特刊。
在本节中,我们将概述ALS的人通常经历的一些变化。您可能有一些,或没有这些症状。我们知道有时会考虑可能发生什么变化,但我们在这里为您提供帮助。我们的目标是,您和您的亲人已经准备好应对前进道路上可能带来的任何变化或挑战。在本手册的稍后,我们将重新审视这些常见症状,并引入管理ALS症状的策略。
抽象肌酸是ATP再生的重要化合物,它对它对运动表现的影响以及最近在认知功能方面进行了广泛研究。考虑到肌酸在衰老,抑郁和精神分裂症等条件下通常会减少,因此旨在探讨补充如何影响记忆和注意力,尤其是在压力和睡眠剥夺中。为此,根据在Medline-Pubmed基础上选择的10项研究进行了文献综述,涵盖了2019年至2024年之间的研究。的结果表明,补充肌酸可以改善认知功能,尤其是在诸如老年人和素食主义者等脆弱人群中,这些人通常具有低肌酸的水平。尽管在健康的年轻人中尚未发现认知任务的显着改善,但在限制大脑合成的条件下,肌酸已显示出作为治疗资源的潜力。可以得出结论,尽管现有研究局限性,肌酸仍可以成为促进心理和认知健康的宝贵工具,这暗示了认知障碍中非药物干预的新方向。关键字:肌酸,认知,补充,心理健康,运动表现。抽象的肌酸是ATP再生的重要化合物,已经对IT对运动表现的影响进行了广泛的研究以及最近对认知功能的影响。为此,根据从Medline-Pubmed数据库中选择的10项研究,文献综述涵盖了2019年至2024年的研究。考虑到肌酸在衰老,抑郁和精神分裂症等疾病中经常降低,其目的是探索补充剂如何影响记忆和注意力,尤其是在压力和睡眠剥夺的情况下。结果表明补充肌酸可以提高认知功能,尤其是在
慢性肾脏疾病(CKD)显着影响美国人群的很大一部分,大约9.2%的个体A。CKD的高级阶段,例如第4阶段,构成了严重的健康风险,包括心力衰竭,心血管问题和中风,强调了迫切需要对Eκ性管理和干预策略的需求。我们提出了一种创新的生物传感器,设计用于连续肌酐监测,这是肾功能的关键标记。我们的传感器的主要原理依赖于使用肌酐脱节酶将肌酐分解为铵,然后由离子敏感的场e观察晶体管(ISFET)检测到。此一步过程简化了检测并提高了准确性。此外,已经集成了微流体系统以提高准确性。数据已进行后处理,并无线传输到智能手机应用程序。此实时数据允许患者和医疗保健提供者跟踪肾脏健康,并迅速对任何变化做出反应,改善结果并降低医疗保健费用。生物传感器的设计强调了磨牙性,可扩展性和用户友好性。我们是针对CKM的患者,即通过心血管疾病和肾脏疾病的患者。的确,肾脏健康影响心脏健康,反之亦然。我们的设备o礼,一种实用且用户友好的解决方案,可更高地管理肾脏健康,从而减少了频繁医院就诊,改善和优化治疗管理以及防止无法恢复的结果。次要的针对性小组是工作医生,他们可以单击“手”,可以访问有关患者的重要信息。
肌张力障碍是一种神经系统疾病,其特征是非自愿运动和不自然的姿势。有许多不同形式的dystonia,全世界影响了300万人。有效治疗仅适用于少数患者,因此迫切需要新的治疗方法。几种动物物种已被用于开发不同形式的肌张力障碍的模型,每种肌张力障碍都具有不同的优势和劣势。本评论概述了用于利用这些模型进行药物发现的策略。有些已用于剖析肌张力障碍的病原体,以鉴定分子靶标的干预措施。其他人已用于对候选药物的经验鉴定。因此,动物模型提供了有希望的新工具,可以为肌张力障碍开发更好的治疗方法。
肌张力障碍是一种临床和遗传上高度异质性神经疾病,其特征是由非自愿持续或间歇性肌肉收缩引起的异常运动和姿势。最近获得了许多开创性的遗传和分子见解。在他们实现基因测试和咨询方面,它们转化为新疗法仍然有限。但是,我们开始了解共享的病理生理途径和分子机制。很明显,肌张力障碍是由涉及基底神经节,小脑,丘脑和皮质的功能失调的网络引起的。在分子水平上,不仅仅是少数几个,通常相互交织的途径与肌张蛋白症基因的致病变异有关,包括神经发育的基因转录(例如,KMT2B,THAP1),钙稳态(例如,kmt2b,thap1),钙稳定性(例如网状应激反应(例如EIF2AK2,PRKRA,TOR1A),自噬(例如VPS16)等。因此,可以将不同形式的肌张力障碍分子分组,这可能在将来促进治疗的发展。
最近的研究表明,能够记录患有半晶状体切除术的脑外伤(TBI)患者的脑电图(EEG)中高γ信号(80-160 Hz)。然而,由于与面部和头部运动相关的表面肌电图(EMG)伪影的混淆带宽重叠,因此提取与运动相关的高γ仍然具有挑战性。在我们以前的工作中,我们描述了一种增强的独立组件分析(ICA)方法,用于从EEG中删除EMG伪像,并通过添加EMG来源(ERASE)称为EMG降低。在这里,我们对六名Hemicraniectomies患者记录的EEG测试了该算法,同时他们执行了拇指流失任务。删除的平均值为52±12%(平均±S.E.M)(最大73%)EMG伪影。相比之下,常规ICA从EEG中删除了EMG伪像的平均值为27±19%(平均值±S.E.M)。尤其是,在擦除擦除后,在半晶切除术中的对侧手运动皮层区域中,高γ同步显着改善。更复杂的高γ复杂性是分形维度(FD)。在这里,我们在每个通道上计算了EEG高γ的FD。高γ的相对FD定义为移动状态下的FD在空闲状态下减去FD。我们发现,施加擦除后,高γ的相对FD与半骨切除术相对于半晶状分裂术,与纤维流量的振幅密切相关。的结果表明,与拇指流量相关的电极上的显着相关系数平均为〜0.76,而非流行性辐射切除术区域的同源电极的系数接近0。在常规ICA之后,在两个半开裂区域(最高0.86)和非流行颅切除术区域(最高0.81)中,高γ和力之间的相对FD之间的相关性均保持较高。在所有受试者中,使用擦除后,平均83%的电极与力显着相关。常规ICA后,只有19%的具有显着相关性的电极位于半晶切除术中。
基因治疗中使用的载体是由经过改造的病毒制成的。如果一个人已经接触过与载体中使用的病毒相同的病毒,那么他或她可能已经对该病毒产生了抗体。这些预先存在的抗体可能会使某人不适合接受基因治疗,因为抗体会在载体进入人体时识别载体,就像抗体识别以前感染的病毒一样。
1。Wang Ch和Al。 J儿童Neurol 2012; 27(3):363-382。 2。 北kn和al。 疾病神经术 2014; 24:97-1 3。 kg claeys。 Dev Med Child Neurol 2020; 62(3):297-3 4。 黄k和al。 Neurol Front 2021; 12:761636。 5。 cassandrini d和al。 Ital J Pediatrates 2017; 43(1):101。Wang Ch和Al。J儿童Neurol2012; 27(3):363-382。2。北kn和al。疾病神经术2014; 24:97-13。kg claeys。Dev Med Child Neurol2020; 62(3):297-34。黄k和al。Neurol Front2021; 12:761636。5。cassandrini d和al。Ital J Pediatrates2017; 43(1):101。2017; 43(1):101。