绿色流动性在21世纪的需求量很高。现代城市的快速增长导致了运输的增加,这导致了大量流通,化石燃料的稀缺性和日益增长的环境问题。因此,应使用新兴清洁剂技术来控制和减少车辆排放[1]。混合动力汽车(HVS),以通过将它们与电动机结合起来减少内燃机(ICES)。通过减少碳和其他污染排放,电动汽车(EV)对环境产生了积极影响。目前,接近零排放车辆的开发是一个巨大的挑战。evs由可再生能源(例如氢)所推动的是一个可行的选择,因为它们仅发出天然副产品,例如水而不是燃烧气体,而不是对空气质量和人口健康不利的燃烧气体。随着电池电动汽车(BEV)的出现,温室气体(GHG)的问题已部分解决。BEV是零发射车辆,由电池发电驱动。BEV不会从根本上减少温室气体排放,因为电力主要是由热植物产生的[2]。BEV有自己的腰靠背,例如有限的驾驶范围,较长的电池充电时间和电池安全性。因此,汽车行业开发了燃油电动汽车(FCEV),最近受到了广泛关注。FCEV由从燃料电池接收电源的电动机提供动力。氢与空气中的氧气结合在一起是FCEV中的主要能量动机。燃料电池具有许多好处,包括干净的燃料,高效率,没有有害排放和低声声音。插入式燃料电池混合动力汽车和燃料电池范围扩展器也引起了很多关注[3,4]。使用燃料电池作为EV的唯一电源时,需要一个启动系统。因此,汽车制造商开发了燃料电池混合动力汽车(FCHEVS),该电动汽车由燃料电池和一个或多个辅助电源(例如电池和超级电容器)提供动力。Daimler Mercedes Benz F-Cell,GM雪佛兰Volt,Toyota FCHV和Honda FCX都是混合动力汽车(HEVS),具有燃料电池 +电池的能量配置。由于FCHEVS的能源进料在燃料电池和辅助功率之间交替,因此需要可靠的能源管理系统(EMS)来根据车辆的操作模式或电源需求在燃料电池和辅助功率之间分发功率。成功的EMS不仅可以保证车辆的正常运行,还可以提高效率,解决物理限制,延长使用寿命并实现全面的燃油经济性。目前,中国香港特殊行政区(香港SAR)尚未发布最新的氢能战略。尽管目前的政策存在缺点,但香港的研究机构和企业仍致力于开发氢气流动性,以实现碳中立性和绿色运输。目前,带有最近,香港生产力委员会(HKPC)推出了香港的第一个燃料电池商业电动汽车 - 带有混合燃料电池和电池系统的氢供电叉车,如图1所示。
kerstst。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 KOT_SIM_AGG。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 kot_sim_make。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 KOT_SIM_AGG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_make。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_ot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 kot_sim_reg。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 run_myot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 run_myots。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6
媒介传播的感染因其广泛影响以及预防,控制和治疗工作所需的大量资源,对全球卫生系统和经济体造成了重大负担。在这项工作中,我们为矢量传播感染的传输动力学制定了数学模型,并通过Atangana-Baleanu衍生物的疫苗接种作用。该模型的解决方案是正面的,并且对于状态变量的正初始值而言。我们介绍了分析模型分析的基本概念和理论。使用下一代矩阵方法,我们确定由R 0表示的阈值参数。分析了系统在无病平衡处的局部渐近稳定性。为了确定所提出模型的解决方案的存在,我们采用了定点理论。开发了一种数值方案,以在不同的输入参数下可视化系统的动态行为。数值模拟是为了说明这些参数如何影响系统的动力学。结果突出了影响媒介传播疾病的传播和控制的关键因素,从而提供了对预防和缓解策略的见解。
摘要 - 消费者能源预测对于管理能源消耗和计划,直接影响运营效率,降低成本,个性化的能源管理和可持续性工作至关重要。近年来,深入学习技术,尤其是LSTM和变形金刚在能源消耗的预测领域取得了巨大成功。尽管如此,这些技术在捕获综合和突然的变化方面存在困难,而且,通常仅在特定类型的消费者(例如,只有办公室,只有学校)上对它们进行检查。因此,本文提出了超能量,这是一种消费者能源预测的策略,利用超网络可用来改善适用于多样化消费者的复杂模式的建模。超网络负责预测主要预测网络的参数。由多项式和径向基函数内核组成的可学习的可自适应核纳入了增强性能。对拟议的超能量进行了评估,包括各种消费者,包括学生住宅,独立的房屋,带电动汽车充电的房屋和联排别墅。在所有消费者类型中,超能量始终超过10种其他技术,包括最先进的模型,例如LSTM,PoastionLSTM和Transformer。
我们通过重现Hilbert空间的相关协方差操作员来考虑概率分布的分析。我们表明,这些操作员的冯·诺伊曼熵和相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与概率分布的各种牙文的有效估计算法一起出现。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只有部分条件的独立性。我们最终展示了这些新的相对熵的新概念如何导致日志分区函数上的新上限,这些概念可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
物理知识的机器学习结合了基于数据的方法的表现力和物理模型的解释性。在这种情况下,我们考虑了一个通用回归问题,其中经验风险是通过量化物理不一致的部分微分方程正规化的。我们证明,对于线性差异先验,该问题可以作为内核回归任务提出。利用内核理论,我们得出了正规风险的最小化器ˆ f n的收敛速率,并表明ˆ f n至少以sobolev minimax速率收敛。但是,根据物理错误,可以实现更快的速率。以一维示例说明了这一原则,支持以物理信息为正规化经验风险的说法对估计器的统计性能有益。关键字:物理知识的机器学习,内核方法,收敛速率,物理正则化
摘要 - 量词计算可以通过启用内核机器来利用量子kernels来代表数据之间的相似性度量来增强机器学习模型。量子内核能够捕获在经典设备上无法有效计算的数据中的关系。但是,没有直接的方法可以针对每个特定用例设计最佳量子内核。我们提出了一种方法,该方法采用了与神经体系结构搜索和自动化中使用的技术相似的优化技术,以启发式方式自动找到最佳内核。为此,我们定义了用于构建实现相似性度量作为组合对象的量子电路的算法,该算法是根据成本函数进行评估的,然后使用元效法优化技术进行了迭代修改。成本函数可以启用许多标准,以确保候选解决方案的有利统计属性,例如动态LIE代数的等级。重要的是,我们的方法独立于采用的优化技术。通过在高能物理问题上测试我们的方法获得的结果表明,在最佳情况下,我们可以相对于手动设计方法匹配或提高测试准确性,表明我们技术的潜力可以减少努力来提供卓越的结果。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
摘要:众所周知,共享硬件元素(例如缓存)会引入微架构侧信道泄漏。消除这种泄漏的一种方法是不跨安全域共享硬件元素。然而,即使在无泄漏硬件的假设下,其他关键系统组件(例如操作系统)是否会引入软件引起的侧信道泄漏仍不清楚。在本文中,我们提出了一种新颖的通用软件侧信道攻击 KernelSnitch,针对内核数据结构(例如哈希表和树)。这些结构通常用于存储内核和用户信息,例如用户空间锁的元数据。KernelSnitch 利用了这些数据结构的大小可变的特性,范围从空状态到理论上任意数量的元素。访问这些结构所需的时间取决于元素的数量(即占用率)。这种变化构成了一个定时侧信道,可被非特权的孤立攻击者从用户空间观察到。虽然与系统调用运行时相比,时间差异非常小,但我们演示并评估了可靠地放大这些时间差异的方法。在三个案例研究中,我们表明 KernelSnitch 允许非特权和孤立的攻击者泄露来自内核和其他进程活动的敏感信息。首先,我们演示了传输速率高达 580 kbit/s 的隐蔽通道。其次,我们利用 Linux 在哈希表中使用的特定索引,在不到 65 秒的时间内执行了内核堆指针泄漏。第三,我们演示了网站指纹攻击,F1 分数超过 89%,表明可以使用 KernelSnitch 观察到其他用户程序中的活动。最后,我们讨论了针对与硬件无关的攻击的缓解措施。