摘要在本文中,我们创建了基于Linux内核的Cyclone V SOC FPGA平台的嵌入式操作系统的分布。比较了著名的开源工具用于创建嵌入式操作系统的工具。使用自定义脚本和简化的管道进行了嵌入式OS合成的逐步示例,从而增加了目标系统的适应性。展示了添加面向硬件的工具以进行SOC和FPGA之间交互的可能性。这使得可以使用远程访问创建广泛的硬件应用程序。所提出的方法也与供应商无关,可以应用于其他FPGA SOC。最终系统虽然在Yocto的资源需求方面没有显着差异,但更适合适应性,可以在必要时移植到Yocto基础上。这使我们能够充分利用完整的自定义方法,确保开发效率,对变化的响应能力和系统资源需求之间的最佳平衡。
摘要:本文介绍了气候反馈内核,称为“能量增益内核”(EGK)。egk允许将净的长波辐射能扰动分开,由普朗克反馈矩阵明确地将单个层的热能发射扰动和热辐射能局部收敛在单个层上的热能扰动扰动,从而导致表面温度的大气层变化 - 对单位强度的响应对单位的响应响应,而在单位强度强迫分别为单位分别为单位分别为单位分别为单位分别为单位分别为单位分别为中心。前者由普朗克反馈矩阵的对角矩阵和后者表示。元素都是正面的,代表了在强大的强迫并在其他层上获得的能量的层上放大的能量扰动,这两种能量都是通过大气中的辐射热耦合实现的 - 表面共同的。将EGK应用于输入能量扰动,无论是由于对外部能量扰动的反应,无论是外部还是内部,例如水蒸气和反照率反馈,都会通过大气表面 - 表面柱中的辐射热摄取来产生其总能量扰动。由于EGK的强度仅取决于气候平均状态,因此提供了一种解决方案,可以有效地客观地将控制气候信息与气候扰动中的气候扰动分开以进行气候反馈研究。鉴于EGK包含关键气候有关平均温度,水蒸气,云和表面压力的均值状态信息,我们设想,EGK在不同气候模型中的EGK多样性可以洞悉为什么在相同的人为绿色房屋气体下的探究中,不同的绿色房屋气体会增加全球平均表面温暖的varying模型。
抽象在内核方法的背景下建立了量子和经典机器学习之间最自然的联系之一。内核方法依赖于内核,它们是生活在大特征空间中的特征向量的内部产物。量子核通常通过明确构建量子特征状态然后采用其内部产品(此处称为嵌入量子核)来评估。由于通常在不明确使用特征向量的情况下评估经典核,因此我们想知道表达嵌入量子内核的表现方式。在这项工作中,我们提出了一个基本问题:所有量子内核是否可以表示为量子特征状态的内部产物?我们的第一个结果是阳性:调用计算普遍性,我们发现,对于任何内核函数,始终存在相应的量子特征图和嵌入量子内核。该问题的操作阅读越多,就与有效的结构有关。在第二部分中,我们正式化了有效嵌入量子内核的普遍性问题。对于移位不变的内核,我们使用随机傅立叶特征的技术表明它们在所有内核的广泛类别中是通用的,这些核允许有效的傅立叶采样变体。然后,我们将此结果扩展到了一类新的所谓构图内核,我们显示的还包含了最近在最近的作品中引入的预测的量子内核。在证明了嵌入量子内核的普遍性以用于移位不变和组成内核之后,我们确定了朝向新的,更外来和未开发的量子核族的方向,如果它们与有效嵌入量子核相对应,则仍然保持开放。
利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本来集成它们,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,其他研究人员将很难理解和重现实验,因为他们需要熟悉实验中涉及的所有不同软件框架
最大平均差异(MMD)流在大规模计算中遭受高计算成本的影响。在本文中,我们表明MMD用Riesz内核K(x,y)= −∥ x -y∥r,r∈(0,2)具有出色的属性,可以有效地计算。我们证明,Riesz内核的MMD(也称为Energy距离)与其切片版本的MMD相吻合。因此,可以在一维设置中执行MMD梯度的计算。在此,对于r = 1,可以应用一种简单的排序算法,以减少O(Mn + N 2)到O((M + N)log(M + N))的复杂性,以使用M和N支持点进行两个测量。作为另一个有趣的后续结果,可以通过Wasserstein-1距离从上和下估算紧凑型措施的MMD。对于实现,我们仅使用有限的切片p,近似切片MMD的梯度。我们表明结果误差具有复杂性o(p
超特权模式(称为“监视”模式)允许控制从一个世界切换到另一个世界。像 Android 或 iOS 这样的富操作系统无需修改就可以在富端运行,其上还有大量的用户应用程序,而安全关键服务则可以在受保护的安全世界中运行。这个安全世界需要自己的操作系统,而操作系统不必像富端的操作系统那样多功能。例如,这种架构可用于在单个手机上将个人世界和专业世界分开,从而允许安全的自带设备 (BYOD) 策略。另一个可能的应用是为安全世界配备 Global Platform [4] 指定的可信执行环境 (TEE),它充当称为可信应用程序的安全服务的特定内核,例如 DRM 管理、密码功能等。
数据集中器单元 - Energa-Operator SA 的 40K 台设备,从电网中的 200 万台智能电表收集数据(波兰最大的实施)。具有 TCP/IP 通信和多种安全协议(IPSEC、802.1X、TLS)的设备支持 PRIME 1.3.6、PRIME 1.4 PLC 标准。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
摘要 利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本将它们集成起来,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,由于需要熟悉代码脚本中涉及的所有不同软件框架,其他研究人员将很难理解和重现实验。我们提出了 QuASK,这是一个用 Python 编写的开源量子机器学习框架,可帮助研究人员进行实验,特别关注量子核技术。QuASK 可用作命令行工具来下载数据集、预处理数据集、量子机器学习例程、分析和可视化结果。QuASK 实现了大多数最先进的算法,通过量子核来分析数据,并可以使用投影核、(梯度下降)可训练量子核和结构优化的量子核。我们的框架还可以用作库并集成到现有软件中,从而最大限度地提高代码重用率。
切片到体积重建(SVR)方法可以很好地处理运动伪像,并为胎儿脑MRI提供高质量的3D图像数据。但是,在SVR方法中,稀疏采样的问题并未很好地解决。在本文中,我们主要集中于从多个被运动伪影损坏的胎儿脑MRI稀疏体积重建。基于SVR框架,我们的方法包括Slice-volume 2D/3D注册,基于点差函数(PSF-)卷更新以及基于自适应内核回归的卷更新。自适应核回归可以很好地处理稀疏的采样数据,并通过通过协方差矩阵捕获局部结构来增强详细的保存。对临床数据进行的实验结果表明,核回归可通过结构灵敏度的参数设置为0.4,转向内核大小为7×7×7的稀疏抽样数据的图像质量提高,并转向平滑带宽0.5。所提出的基于GPU的方法的计算性能的速度超过90倍。