摘要:本文介绍了气候反馈内核,称为“能量增益内核”(EGK)。egk允许将净的长波辐射能扰动分开,由普朗克反馈矩阵明确地将单个层的热能发射扰动和热辐射能局部收敛在单个层上的热能扰动扰动,从而导致表面温度的大气层变化 - 对单位强度的响应对单位的响应响应,而在单位强度强迫分别为单位分别为单位分别为单位分别为单位分别为单位分别为单位分别为中心。前者由普朗克反馈矩阵的对角矩阵和后者表示。元素都是正面的,代表了在强大的强迫并在其他层上获得的能量的层上放大的能量扰动,这两种能量都是通过大气中的辐射热耦合实现的 - 表面共同的。将EGK应用于输入能量扰动,无论是由于对外部能量扰动的反应,无论是外部还是内部,例如水蒸气和反照率反馈,都会通过大气表面 - 表面柱中的辐射热摄取来产生其总能量扰动。由于EGK的强度仅取决于气候平均状态,因此提供了一种解决方案,可以有效地客观地将控制气候信息与气候扰动中的气候扰动分开以进行气候反馈研究。鉴于EGK包含关键气候有关平均温度,水蒸气,云和表面压力的均值状态信息,我们设想,EGK在不同气候模型中的EGK多样性可以洞悉为什么在相同的人为绿色房屋气体下的探究中,不同的绿色房屋气体会增加全球平均表面温暖的varying模型。
物理知识的机器学习结合了基于数据的方法的表现力和物理模型的解释性。在这种情况下,我们考虑了一个通用回归问题,其中经验风险是通过定量物理不一致的部分微分方程正规化的。我们证明,对于线性差异先验,该问题可以作为内核回归任务提出。利用内核理论,我们得出了正规风险的最小化器ˆ f n的收敛速率,并表明ˆ f n至少以sobolev minimax速率收敛。但是,根据物理错误,可以实现更快的速率。以一维的例子为例,说明了这一原则,支持以物理信息将经验风险正规化可以对估计器的统计绩效有益的说法。关键字:物理知识的机器学习,内核方法,收敛速率,物理正则化
摘要。将微处理器与侧通道攻击进行硬化是确保其安全性的关键方面。此过程中的关键步骤是在识别和减轻“泄漏”硬件模块,该模块在执行加密算法期间泄漏信息。在本文中,我们介绍了不同的泄漏检测方法,侧通道漏洞因子(SVF)和测试向量泄漏评估(TVLA)如何有助于对微处理器的硬化。我们使用两个加密算法sha-3和AES对两个RISC-V核心Shakti和Ibex进行实验。我们的发现表明,SVF和TVLA可以为识别泄漏模块提供宝贵的见解。但是,这些方法的有效性可能会因使用的特定核心和加密算法而有所不同。我们得出的结论是,泄漏年龄检测方法的选择不仅应基于计算成本,还应基于系统的特定要求,所检查算法的实施以及潜在威胁的性质。
摘要在本文中,我们创建了基于Linux内核的Cyclone V SOC FPGA平台的嵌入式操作系统的分布。比较了著名的开源工具用于创建嵌入式操作系统的工具。使用自定义脚本和简化的管道进行了嵌入式OS合成的逐步示例,从而增加了目标系统的适应性。展示了添加面向硬件的工具以进行SOC和FPGA之间交互的可能性。这使得可以使用远程访问创建广泛的硬件应用程序。所提出的方法也与供应商无关,可以应用于其他FPGA SOC。最终系统虽然在Yocto的资源需求方面没有显着差异,但更适合适应性,可以在必要时移植到Yocto基础上。这使我们能够充分利用完整的自定义方法,确保开发效率,对变化的响应能力和系统资源需求之间的最佳平衡。
我们介绍了内核弹性自动编码器(KAE),这是一种基于变压器架构的自我监管的生成模型,具有增强的分子设计性能。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。 与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。 包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。 KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。 此外, KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。 除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。
在本文中,我们提出了一个分数数学模型,以通过使用分形分数算子的广义形式来解释胰高血糖素在维持人体葡萄糖水平中的作用。结果的存在,界限和积极性是由固定点理论和Lipschitz的生物学可行性构建的。此外,处理了Lyapunov的第一个衍生功能的全球稳定性分析。分数系统系统的数值模拟是在lagrange插值的帮助下得出的。在不同初始条件下的正常和1型糖尿病的结果得出,这支持了理论观察。这些结果在闭环设计的意义上在葡萄糖 - 胰岛素 - 葡聚糖系统中起着重要作用,这有助于开发人工胰腺来控制社会中的糖尿病。
抽象在内核方法的背景下建立了量子和经典机器学习之间最自然的联系之一。内核方法依赖于内核,它们是生活在大特征空间中的特征向量的内部产物。量子核通常通过明确构建量子特征状态然后采用其内部产品(此处称为嵌入量子核)来评估。由于通常在不明确使用特征向量的情况下评估经典核,因此我们想知道表达嵌入量子内核的表现方式。在这项工作中,我们提出了一个基本问题:所有量子内核是否可以表示为量子特征状态的内部产物?我们的第一个结果是阳性:调用计算普遍性,我们发现,对于任何内核函数,始终存在相应的量子特征图和嵌入量子内核。该问题的操作阅读越多,就与有效的结构有关。在第二部分中,我们正式化了有效嵌入量子内核的普遍性问题。对于移位不变的内核,我们使用随机傅立叶特征的技术表明它们在所有内核的广泛类别中是通用的,这些核允许有效的傅立叶采样变体。然后,我们将此结果扩展到了一类新的所谓构图内核,我们显示的还包含了最近在最近的作品中引入的预测的量子内核。在证明了嵌入量子内核的普遍性以用于移位不变和组成内核之后,我们确定了朝向新的,更外来和未开发的量子核族的方向,如果它们与有效嵌入量子核相对应,则仍然保持开放。
最大平均差异(MMD)流在大规模计算中遭受高计算成本的影响。在本文中,我们表明MMD用Riesz内核K(x,y)= −∥ x -y∥r,r∈(0,2)具有出色的属性,可以有效地计算。我们证明,Riesz内核的MMD(也称为Energy距离)与其切片版本的MMD相吻合。因此,可以在一维设置中执行MMD梯度的计算。在此,对于r = 1,可以应用一种简单的排序算法,以减少O(Mn + N 2)到O((M + N)log(M + N))的复杂性,以使用M和N支持点进行两个测量。作为另一个有趣的后续结果,可以通过Wasserstein-1距离从上和下估算紧凑型措施的MMD。对于实现,我们仅使用有限的切片p,近似切片MMD的梯度。我们表明结果误差具有复杂性o(p
摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。