摘要 - 这项研究解决了管理糖尿病的更先进诊断工具的必要性,糖尿病是一种慢性代谢疾病,导致葡萄糖,脂质和蛋白质代谢的破坏是由胰岛素活性不足引起的。该研究研究了机器学习模型的创新应用,特别是堆叠的多内核支持向量机随机森林(SMKSVM-RF),以确定它们在识别医疗数据中复杂模式方面的有效性。创新的合奏学习方法SMKSVM-RF结合了支持向量机(SVM)和随机森林(RFS)的优势,以利用其多样性和互补特征。SVM组件实现多个内核来识别唯一的数据模式,而RF组件由决策树组成,以确保可靠的预测。将这些模型集成到堆叠的体系结构中,SMKSVM-RF可以通过优势通过优势来增强分类或回归任务的总体预测性能。这项研究的一个重大发现是引入SMKSVM-RF,它在混淆矩阵中显示出令人印象深刻的73.37%的精度。此外,其召回率为71.62%,其精度为70.13%,值得注意的F1分数为71.34%。这种创新技术显示了增强当前方法并发展为理想的医疗系统的潜力,这表明糖尿病检测方面的一个值得注意的一步。结果强调了复杂的机器学习方法的重要性,并强调了SMKSVM-RF如何提高诊断精度并有助于持续发展医疗保健系统,以实现更有效的糖尿病管理。
利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本来集成它们,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,其他研究人员将很难理解和重现实验,因为他们需要熟悉实验中涉及的所有不同软件框架
数据集中器单元 - Energa-Operator SA 的 40K 台设备,从电网中的 200 万台智能电表收集数据(波兰最大的实施)。具有 TCP/IP 通信和多种安全协议(IPSEC、802.1X、TLS)的设备支持 PRIME 1.3.6、PRIME 1.4 PLC 标准。
一般来说,首先要实现一个实例,即问题定义参数的容器,如图 2 中的单元格 2 所示。从该实例构建 ConstrainedObjective,它是一个处理实例数据以获取目标函数和约束集合的工厂,参见单元格 3。然后可以将后者自动转换为相应的惩罚目标项,这些惩罚目标项与实际目标函数一起包含在 ObjectiveTerms 中。目标项的加权和形成 Objective,即最终的 Ising/QUBO 问题。上述步骤均在单元格 5 中执行,从使用单元格 4 中定义的参数实例化具体实例开始。
D-Wave 已经围绕其量子退火器提供了一个广泛的软件库,并且已经实现了几个转换步骤 [3]。我们不想与 D-Wave 的 API 竞争,而是希望以专注于原始问题的实例中心方法与之相伴。我们简化所提供功能的一个具体示例是处理次数大于 2 的多项式,这只能通过 D-Wave API 通过绕行获得,参见 [3],这意味着用户需要了解结构差异。在 quark 中,不需要其他任何内容,只需要基类。随着从约束问题到无约束问题的步骤,引入了具有相应惩罚项的约简变量,从而自动降低多项式的次数。
摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。
基于内核的非线性流形学习,用于基于脑电图的功能连通性分析和渠道选择,并应用于阿尔茨海默氏病Gunawardena,R.,Sarrigiannis,P。G.,Blackburn,D。J.&he,F。出版了PDF,存放在考文垂大学的存储库原始引用:Gunawardena,R,R,Sarrigiannis,PG,Blackburn,DJ&HE,F 2023,'基于内核的非线性流动性学习,用于EEG基于EEG的功能连接分析,并适用于Alzheimer's Disean's Neurosience,Neurosience,vol,vol。523,pp。140-156。 https://dx.doi.org/10.1016/j.neuroscience.2023.05.033 doi 10.1016/j.neuroscience.2023.05.033 ISSN 0306-4522 ESSN ESSN 1873-7544出版商:Elsevier出版商:Elsevier:Elsevier这是CC BID-NC-ND-NC-ND DD( http://creativecommons.org/licenses/by-nc-nd/4.0/)
摘要 利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本将它们集成起来,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,由于需要熟悉代码脚本中涉及的所有不同软件框架,其他研究人员将很难理解和重现实验。我们提出了 QuASK,这是一个用 Python 编写的开源量子机器学习框架,可帮助研究人员进行实验,特别关注量子核技术。QuASK 可用作命令行工具来下载数据集、预处理数据集、量子机器学习例程、分析和可视化结果。QuASK 实现了大多数最先进的算法,通过量子核来分析数据,并可以使用投影核、(梯度下降)可训练量子核和结构优化的量子核。我们的框架还可以用作库并集成到现有软件中,从而最大限度地提高代码重用率。
摘要:本文使用脑电图数据引入一种方法,用于在运动图像(MI)任务中对右手和左手类别进行分类。内核跨光谱功能连接网络(KCS-FCNET)方法通过提供更丰富的空间 - 频谱特征图,更简单的体系结构和更容易解释的EEG驱动的MI歧视方法来解决这些局限性。尤其是,KCS-FCNET使用基于1D横向的单个神经网络从RAW EEG数据中提取时间频率特征和跨光谱高斯内核连接层来模型通道功能关系。因此,功能连接功能映射减少了参数的数量,从而通过提取与MI任务相关的有意义的模式来改善可解释性。这些模式可以适应主题的独特特征。验证结果证明,引入KCS-FCNET浅架构是一种基于脑电图的MI分类的有前途的方法,具有在脑computer接口系统中实现现实世界使用的潜力。
Quantum机器学习是一项越来越多的研究领域,旨在执行量子计算机协助的机器学习任务。基于内核的量子机学习模型是范式涉及量子状态的范式示例,并且从这些状态之间的重叠中计算出革兰氏矩阵。在手头的内核中,常规的机器学习模型用于学习过程。在本文中,我们研究了量子支持向量机和量子内核脊模型,以预测量子系统的非马克维亚性程度。我们对幅度阻尼和相阻尼通道进行数字量子模拟,以创建我们的量子数据集。我们详细介绍了不同的内核函数,以绘制数据和内核电路以计算量子状态之间的重叠。我们表明,我们的模型提供了与完全经典模型相当的准确预测。