简介 美国政府能源信息署最近发布了一份名为《2023 年国际能源展望》的报告,报告指出,全球一次能源消耗量将从目前的 640 千万亿 BTU 增至约 850 千万亿 BTU。能源需求和消耗量的增加将主要由核能和可再生能源来满足。 太阳能和其他可再生能源消耗量累计将从目前的 86 千万亿 BTU 增至约 206 千万亿 BTU。 对清洁能源日益增长的需求促使全球研究更新、更有效的太阳能利用方式,其中太空太阳能发电 (SBSP) 最受关注。 从概念上讲,它设想在地球轨道上放置一系列太阳能电池板,将入射的太阳能转换成微波并安全地传输到地球。 在地球接收站,这种微波将被转换成电能,并进一步整合到一个国家的电网中。
目前还没有技术能够有效地筛选新的长距离染色质组织调节剂。在这里,我们开发了一个基于图像的高内涵 CRISPR 筛选平台,该平台结合了新的基于 FISH 的条形码读取方法 (BARC-FISH) 和染色质追踪。我们在人类细胞中进行了功能丧失基因筛选,并从 13,000 个成像靶点扰动组合以及 25 个
可废止(或非单调)推理的重要性早已在人工智能中得到认可,通过逻辑和自动推理对这种非演绎推理进行形式化建模和计算模拟的提议可以追溯到该领域早期的开创性工作。但从那时起到现在,基于逻辑的人工智能还没有产生一种逻辑和相关的自动化来处理充斥着任意迭代的内涵运算符(如相信、知道等)的可废止推理。我们提出了一种基于逻辑的新方法来解决需要内涵运算符和推理的可废止推理问题。我们利用了两个核心问题。第一个是“尼克松钻石”(ND)[1],它是人工智能可废止推理研究中一个简单但具有启发性的样本。我们展示了如何通过构建两个论点(对应于钻石的两个分支)来解决 ND 中固有的矛盾,其中一个论点“击败”另一个论点。解决方案是通过对代理关于钻石断言上下文的信念进行推理来找到的。这种关于信念的推理本质上需要内涵逻辑。我们的第二个问题是认知科学中一个经过大量研究且更深入的问题的变体:Byrne 的“抑制任务”(ST)[ 2 ]。我们提出了一个具有挑战性的 ST 新版本,它明确且不可避免地具有内涵性——然后表明我们的新 AI 方法可以应对这一挑战。因此,我们声称我们的方法是“适用于人工智能的”——但我们认为,只有在认知科学中对相关类别的受试者进行的经验实验与我们的人工智能方法的结果相一致时,它才具有认知上的充分性。本扩展摘要的其余部分将对我们用来解决这两个问题的机制(即认知可能性计算)以及解决方案本身进行高级概述。
摘要:应用 CRISPR/Cas9 系统将荧光蛋白敲入人类多能干细胞 (hPSC) 中的内源性目的基因,有可能促进基于 hPSC 的疾病建模、药物筛选和移植疗法优化。为了评估荧光报告 hPSC 系用于高内涵筛选方法的能力,我们将 EGFP 靶向内源性 OCT4 基因座。产生的 hPSC–OCT4–EGFP 系表达与多能性标记物一致的 EGFP,并且可以适应多孔格式以进行高内涵筛选 (HCS) 活动。然而,在长期培养后,hPSC 暂时失去了 EGFP 表达。或者,通过将 EGFP 敲入 AAVS1 基因座,我们建立了稳定且一致的 EGFP 表达 hPSC–AAVS1–EGFP 系,该系在体外造血和神经分化期间保持 EGFP 表达。因此,hPSC–AAVS1–EGFP 衍生的感觉神经元可适应高内涵筛选平台,该平台可应用于高通量小分子筛选和药物发现活动。我们的观察结果与最近的发现一致,表明在 OCT4 基因座进行 CRISPR/Cas9 基因组编辑后会出现高频率的靶向复杂性。相反,我们证明 AAVS1 基因座是 hPSC 中的安全基因组位置,具有高基因表达,不会影响 hPSC 质量和分化。我们的研究结果表明,应应用 CRISPR/Cas9 整合的 AAVS1 系统来生成稳定的报告 hPSC 系以用于长期 HCS 方法,并且它们强调了仔细评估和选择应用的报告细胞系以用于 HCS 目的的重要性。
摘要 纤毛病是一种广泛的遗传性发育和退行性疾病,与运动纤毛或原发性非运动纤毛的结构或功能缺陷有关。已知的纤毛病致病基因约为 200 种,虽然基因检测可以提供准确的诊断,但接受基因检测的纤毛病患者中有 24-60% 并未得到基因诊断。部分原因是,根据美国医学遗传学学院和分子病理学协会的现行指南,很难对由错义或非编码变异引起的疾病做出可靠的临床诊断,而这些变异占疾病病例的三分之一以上。PRPF31 突变是退行性视网膜纤毛病常染色体显性视网膜色素变性的第二大常见病因。在这里,我们提出了一种高通量高内涵成像检测方法,可定量测量 PRPF31 错义变异的影响,符合最近发布的临床变异解释基线标准体外测试标准。该检测利用了使用 CRISPR 基因编辑生成的新型 PRPF31 +/– 人视网膜细胞系,以提供具有明显更少纤毛的稳定细胞系,其中表达和表征了新的错义变体。我们表明,在零背景下表达纤毛病基因错义变体的细胞的高内涵成像可以根据纤毛表型表征变体。我们希望这将成为临床表征意义不明确的 PRPF31 变体的有用工具,并可以扩展到其他纤毛病中的变体分类。