符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标
在内环上安装了欧洲塑料回收商的聚合物特异性回收能力(欧洲塑料回收商,2024a)。....................................................... 10
病例报告:该患者30多年前左眼曾接受过角膜内环段手术(ICRS),以矫正因扩张复发而导致的散光(2012年)。ICRS术后,患者的屈光散光度数从-9.00 D改善至-3.50 D,并保持稳定达8年。十年后,患者决定再次进行手术干预。当时的角膜内环段较小,位于瞳孔中心,且瘢痕处扩张。因此,我们决定进行DALK手术。在这些病例中,钻孔手术在原瘢痕外进行,以角膜缘和瞳孔为中心。然后,我们继续进行 Anwar 于 1974 年描述的去角膜后弹力层手动解剖,从钻孔边缘开始,目标是达到角膜中央 50 至 70 微米之间的去角膜后弹力层前平面,通过术中 OCT 或超声角膜厚度测量,然后继续向周边解剖。深层平面的解剖动作必须小心,避免在疤痕水平牵引。一旦达到中央水平的适当平面,我们必须越过 PK 的疤痕到达新钻孔的边缘,防止疤痕裂开并造成穿孔。一旦获得适当的平面,就要准备供体角膜并缝合。
2. 中心区:交通模式……………………………………………… 17 2.1 简介……………………………………………………………….. 17 2.2 2006 年的发展情况…………………………………………... 17 2.3 以往报告的主要发现……………………………………... 17 2.4 2006 年的主要发现………………………………………………... 19 2.5 进入收费区的交通……………………………………………... 19 2.6 离开收费区的交通………………………………………... 23 2.7 在收费区内流通的交通……………………………... 25 2.8 内环路上的交通……………………………………... 30 2.9 接近收费区的放射状交通……………………………... 32 2.10 选定地方道路上的交通状况………………………………………….. 33 2.11 其他指标………………………………………………………… 34 2.12 要点总结………………………………………………………. 34 3. 中心区:交通拥堵…………………………………………………… 35 3.1 简介…………………………………………………………………… 35 3.2 2006 年的发展情况……………………………………………………... 35 3.3 以往报告的主要发现……………………………………………………... 35 3.4 伦敦中心收费区内的交通拥堵情况……………………………………... 37 3.5 内环路的交通拥堵情况………………………………………………... 40 3.6 靠近伦敦中心收费区的放射状路线的交通拥堵情况………………………………………………... 41 3.7 伦敦内环主干道的交通拥堵情况……………………………………... 42 3.8 伦敦外环主干道的交通拥堵情况……………………………………... 43 3.9 交通拥堵与交通量的关系……………………………………... 44 3.10 近期研究总结趋势………………………………………… 45 3.11 解释……………………………………………………………… 46 3.12 分析………………………………………………………………………. 48
该集水区估计人口为187万,预计到2050年将增长到313万。重要的地区正在经历迅速的城市居民发展,侵占了以前用于支持农业的土地。墨尔本内环和中环郊区的致密化,再加上外部集水区的快速增长,强调了对集成集水集计划和管理的需求,以保护和增强birrarung,并提高对社区福祉和经济繁荣的生计。在景观中保留水对于支持整个集水区的宜居性和生物多样性更为重要,尤其是在更容易受到热浪影响的生长区域。
德克萨斯州大草原市,以自动飞行控制系统 (AFCS) 的形式为 TH-57 提供基本的 IMC 飞行能力。MINISTAB 系统设计为三轴透明飞行控制系统。在俯仰和滚转轴上,它提供速率阻尼、姿态保持,并结合了力配平功能。偏航增强提供速率阻尼和相对航向保持。系统的俯仰和滚转增强基本上独立于偏航增强运行。此外,在巡航飞行方案中,系统还提供高度保持功能。MINISTAB 设计为透明的 AFCS,这意味着系统的控制输入对操作员来说是看不见的,操作员可以随时用驾驶舱飞行控制输入覆盖 AFCS。这些类型的 AFCS 输入,其中 AFCS 在后台进行飞行控制输入而操作员不知情,被称为“内环”。换句话说,操作员在飞行时不必主动考虑使用 AFCS 系统。由于飞行控制系统采用液压增压设计,力配平旨在为操作员提供人工感觉。AFCS 系统使用与飞行控制液压增压伺服器一起安装的串联执行器。因此,MINISTAB 输入到飞行控制系统中的方式是“内环”方式,即操作员无法在周期性、集体或偏航踏板中检测到 MINISTAB 输入。附件 (1) 中给出了 MINISTAB 操作的流程图。该系统由 3 台计算机(每个控制轴一台)、3 个配平阻尼单元 (TDU)、一台空气数据计算机、3 个执行器、执行器位置指示器、MINISTAB 控制器、接线盒、周期式握把配平开关和踏板配平微动开关组成。MINISTAB 控制器 安装在飞行员之间的中央控制台上的控制面板(图 2)旨在
基准测试提案:F-16 战鹰是一种机动性极强的飞机,自 20 世纪 70 年代开始生产。从那时起,已有多项研究和书籍对飞机的性能进行了调查,并创建了仿真模型。在本文中,我们将其中一些模型作为验证挑战,提供 MATLAB 和 Python 代码来模拟 F-16 执行地面防撞以及其他自主机动。飞机模型和内环控制器具有 16 个连续变量和分段非线性微分方程。自主机动由外环控制器使用有限状态机执行,其中保护涉及连续变量。根据飞机飞行限制和模型边界提供通过/失败规范。该模型旨在成为分析航空航天系统详细行为的起点。
本文介绍了一种固定翼无人机自动起飞和着陆控制系统 (ATOLS)。我们提出了一种制导和控制系统,以满足使用拦阻索进行高精度着陆的要求。对于轨迹跟踪,推导了基于视线 (LOS) 的纵向和横向制导律。对于内环控制器的设计,直接从飞行数据中识别线性模型。为了在起飞和着陆期间飞行状态发生变化的情况下保持控制性能的一致性,线性基线控制器增强了使用 L 1 自适应控制理论设计的补偿器,从而无需进行传统的增益调度。所提出的控制系统在带有拦阻钩的 Cessna UAV 上实施以进行验证。所提出的起降系统在一系列全尺寸航母模型试飞中表现出了稳定的性能。