蛋白质印迹分析显示,人类冠状动脉(≤30 岁、≥58 岁)和小鼠主动脉(3 周龄、65 周龄、109 周龄)中层蛋白 A/C 表达随年龄而下调。小鼠主动脉的流式细胞术分析显示,层蛋白 A/C 下调发生在内皮细胞 (EC) 和血管平滑肌细胞中,但不发生在外膜细胞中。EC 特异性层蛋白 A/C 消融(Ldlr-/- Lmnaflox/floxCdh5-CreERT2)的小鼠表现出出生后生长缺陷、动脉收缩压升高和寿命缩短。此外,这些小鼠的主动脉环显示内皮依赖性血管舒张功能受损,与 12 周龄对照组相比,野生型 114 周龄小鼠也观察到了这种情况。超声心动图研究显示,年轻和年老的 Ldlr-/- Lmnaflox/floxCdh5-CreERT2 小鼠均存在舒张功能障碍,这与心脏胶原沉积增加和血清 NT-proBNP 水平升高有关。高通量组学研究显示 Ldlr-/-Lmnaflox/floxCdh5-CreERT2 小鼠的几个生物过程发生了改变,表明存在内皮功能障碍,包括 Nos3 表达减少和一氧化氮信号通路中断。
*通讯作者:Devika S Manickam 600 Forbes Avenue,453 Mellon Hall,匹兹堡,宾夕法尼亚州15282。电子邮件:soundaramanickd@duq.edu x/twitter:@manickam_lab电话:+1(412)396-4722
肝脏正弦内皮细胞(LSEC)是高度专业的内皮细胞(EC),在肝发育和再生中起着重要作用。此外,它参与了各种病理过程,包括脂肪变性,炎症,纤维化和肝细胞癌。然而,培养后LSEC的快速去分化极大地限制了其在生物医学应用中的体外建模。在这项研究中,我们开发了一种高效的方案,用于仅在8天内诱导人类诱导的多能干细胞(HIPSC)的LSEC像细胞。使用单细胞转录组分析,我们确定了几种新型LSEC特异性标记,例如EPAS1,LIFR和NID1,以及几种先前揭示的标记物,例如CLEC4M,CLEC1B,CRHBP,CRHBP和FCN3。这些LSEC标记在我们的LSEC样细胞中特异性表达。此外,HIPSC衍生的细胞表达LSEC特异性蛋白,并表现出与LSEC相关的功能,例如乙酰化低密度脂蛋白(AC-LDL)和免疫复杂的内吞作用。总体而言,这项研究证实了我们的新规程允许HIPSC迅速在体外获得LSEC样表型和功能。有效,迅速生成LSEC的能力可能有助于在肝特异性多细胞微环境中更精确地模仿肝发育和疾病进展,从而为新的治疗策略的发展提供新的见解。
简介门脉高压症 (PHTN) 是肝硬化的后果,也是肝硬化患者进行肝移植和死亡的主要原因 (1) 。根据欧姆定律的液压当量,门脉压力由血流量和阻力决定。因此,PHTN 的病理生理学可归因于血流量增加、血管阻力增加或两者兼而有之 (2) 。肝窦内皮细胞 (LSEC) 形成肝窦的通透性屏障,是肝脏微循环和门脉压力的重要调节器 (3) 。研究表明 LSEC 会在 PHTN (1) 进展过程中启动肝窦重塑。当暴露于肝损伤时,肝窦会发生重塑,LSEC 窗孔会丢失,形成有组织的基底膜(该过程称为毛细血管化)(4) ,以及肝窦血管生成 (5) 。毛细血管化的肝窦具有基底膜形成,导致肝窦僵硬,从而导致肝血管阻力增加和 PHTN 的发展 (1)。同时,毛细血管化的 LSEC 具有普通内皮细胞的表型,可以从已有的血管床形成新血管,这一过程称为血管生成 (6, 7)。肝内循环中血管生成引起的血流增加会导致 PHTN。然而,肝窦重塑的潜在机制尚不清楚。炎症信号也通过影响肝窦重塑而导致 PHTN (5)。我们团队和其他团队先前发表的论文表明,炎症刺激(8、9),包括 TNF-α 刺激,会导致 LSEC 表型的丧失(9),并导致随后的异常血管分泌信号传导,从而募集免疫细胞至肝窦(10-14)。脂多糖的炎症刺激会促进
1加拿大卡尔加里大学舒利希工程学院的制药生产研究机构,加拿大卡尔加里2500号,加拿大卡尔加里,加拿大卡尔加里。 jolene.phelps@ucalgary.ca 2卡尔加里大学舒尔希工程学院生物医学工程系,加拿大卡尔加里2500号,加拿大卡尔加里大学驱动器2500号。 hartd@ucalgary.ca(D.A.H.); Amitha@ucalgary.ca(A.P.M.)3卡尔加里大学卡明医学院麦卡格骨与联合健康研究所,加拿大卡尔加里3280 Drive N.W. 3280 Drive,AB T2N 4Z6; duncan@ucalgary.ca 4,卡尔加里大学医学院,卡尔加里大学医学院,3330 Hospital Drive N.W.,Calgary,AB T2N 4N1,加拿大5号,加拿大5家,卡尔加里大学,卡尔加里大学2500大学运动学院N.W. Universe n.w. University Drive,Calgary N.W. 29 N.W. 29号,Calgary,AB T2N 2T9,加拿大7号土木工程系,卡尔加里大学舒利希工程学院,卡尔加里大学,2500 University Drive N.W. asen@ucalgary.ca;电话。: +1-403-210-9452;传真: +1-403-220-8962
1 Centro de Biotecnolologe i y gen gen gen gen rica de Plantas(CBGP),研究所研究Instituto nacional deIncorkingaciónyy y y y y y y agraria y Food(Inia-csic),政治是Cnica de Madrid(UPM),28222333233323332233233 pozuelo de alarar c。 daniel.truchado@upm.es(D.A.T。); mjuamol@ibmcp.upv.es(M.J.-M。); sararincre@gmail.com(s.r。); lucia.zurita@inia.csic.es(L.Z. ); jaime.tome@upm.es(J.T.-A。) 2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。); jaime.tome@upm.es(J.T.-A。)2 Unidad deInnovación Biom是Dica,调查中心能量是TICAS,中世纪,tecnológicas(ciemat),Avenida Complutense 40,28040,西班牙马德里; chorz@ciemat.es 3 Institution ofResjuctionación健康医院12 de Octubre(IMAS12),Avenida decórdobas/n,28041 Madrid,西班牙4RespessivaciónBiom中心是Red de decáncer(Ciberonc),Avenida de Monforte de Monforte de Monforte de Monforte de lemos 3-5-5统治:fponz@inia.csic.es†当前地址:Biologo de Instituto deBiologoí分子Y Celular de Plantas(IBMCP),UPV-CSIC,C/de l'Enginyer Fausto Elio s/n,46022,46022,Val是Ncia,Spain。
1。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2. 宾夕法尼亚州费城宾夕法尼亚大学生物工程系3. 圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2.宾夕法尼亚州费城宾夕法尼亚大学生物工程系3.圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。新泽西州格拉斯伯勒的罗文大学生物医学工程系6。化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。抑制剂在3小时的抑制剂清除之前,在反馈回路闭合之前,恢复了血管的生长,但在8小时时冲洗,比反馈时间尺度更长,在Vivo中为反馈动力学建立了上限和上限。从机械上讲,YAP和TAZ诱导了RhoA信号传导的转录抑制,以维持动态细胞骨架平衡。在一起,这些数据建立了
摘要:肥胖的发展与脂肪组织(AT)结构的大量调节有关。AT的可塑性在整个成人寿命中的显着扩展或减小大小的能力反映出,这与其脉管系统的发展有关。脉管系统的这种增加可能是通过脂肪组织衍生的干细胞(ASC)分化为内皮细胞(EC)并形成新的微脉管系统来介导的。我们已经表明,microRNA(miRNA)-145调节ASC分化为EC样细胞(ECL)细胞。在这里,我们调查了ASCS分化为ECS是否受miRNA签名的控制,该miRNA签名取决于肥胖库所产生的脂肪仓库位置和 /或代谢条件。人类ASC是通过瘦肉和肥胖患者的手术手术从白色获得的,被诱使分化为ECL细胞。我们已经确定,皮下ASC和内脏ASC和miRNA-424-5p和MiRNA-424-5p和miRNA-378A-3P中的miRNA-29b-3p在皮下(S)ASC中均参与分化为EC样细胞。这些miRNA通过靶向FGFR1,NRP2,MAPK1和TGF-β2和MAPK信号通路来调节其对ASC的促血管生成作用。我们首次表明miRNA-29b-3p上调通过直接靶向SASC和内脏ASC的TGFB2来促进ASC的分化为ECL细胞。此外,我们的结果表明,与SASC的起源(肥胖/精益)无关,miRNA-378A-3P的上调以及MiRNA-424-5p的下调分别抑制MAPK1和过表达FGFR1和NRP2。总而言之,脂肪仓库的位置和肥胖都通过特定miRNA的表达影响了居民ASC的分化。
在我们目前的工作中,我们需要一个针对Sprague-Dawley大鼠血脑屏障(BBB)内皮细胞(EC)的RAAV,但没有其他脑细胞。在系统地给药时,AAV血清型AAV9和AAV2可以在小鼠中转导BBB细胞和脑实质细胞(Dayton等,2012; Fu等,2003)。capsid变体(例如AAV9衍生的变体AAV PHP.B和AAV2衍生的变体AAV-BR1)已通过氨基酸插入进行设计,以改善小鼠的BBB转导(Hordeaux等,2018;Körbelin等,2016,2016)。尤其是,AAV2上限变体BR1在高度的小鼠BBB中转导EC,只有很少的非血管转导,并且在许多研究中使用了各种小鼠模型(Liu等,2019; Nikolakopoulou,nikolakopoulou等,2021; 2021; 2021; Rasmussen et al。,20223; Chao tan;据我们所知,目前尚无出版物在大鼠模型中测试AAV-BR1变体。
睫状缺陷引起几种纤毛病,其中一些纤毛发作迟到,这表明cilia被积极维持。仍然,我们对维护的机制的理解很糟糕。在这里,我们显示了果蝇黑色素果ift88(DM IFT88/nompb)继续沿着完全形成的感觉纤毛移动。我们进一步识别无活跃的,果蝇听力和负性持续性行为的TRPV通道亚基,以及尚未表征的果蝇鸟叶尼犬环酶2D(DM GUCY2D/ CG34357)作为DM IFT88货物。我们还显示了DM IFT88与循环酶的细胞内部分的结合,该部分在几种退化性视网膜疾病中是进化保守和突变的,对于DM GUCY2D的纤毛定位而言是不可能的。最后,成年纤维中DM IFT88和DM GUCY2D的急性敲低导致纤毛功能的维持,障碍和刺激性刺激性的行为导致缺陷,但并未显着影响睫状超结构。我们得出的结论是,成人范围内听力的感觉睫状功能涉及DM IFT88及其至少两个信号传导跨膜货物,DM GuCy2D和无效的主动维护程序。