用于测试微力机械系统,我们提出了内置自我测试方法的分类法。这些解决方案是非侵入性的,具有成本效益并且在测试过程中通常是非侵入性的解决方案,因为微机械系统(MEMS)测试的成本可以占最终产品总成本的50%。广泛分析了测试方法的选择,并根据三个性能指标介绍了此类方法的分类表:易于应用,测试应用,有用性。性能表还为该方法提供了一个现场测试域。虽然内置测试(BIST)方法确实取决于手头的应用,但利用大多数传感器的固有多模式感应能力可能是有效内置自我测试的一种有希望的方法。
诊断功能还记录高价值参数数据,可用于系统和组件健康跟踪、机队数据研究和预测。通过观察组件性能的变化或识别异常响应行为,可以观察到早期故障情况,以免它们发展成为重大问题,这些问题可通过机载内置测试 (BIT) 检查识别出来,在最坏的情况下可能会导致服务延迟或取消。查看整个机队的数据趋势可以识别表明健康状况下降的异常行为,确定使用因素对组件寿命的影响,并优化维护实践。预测不仅限于故障评估,还可以预测剩余使用寿命,从而允许提前安排维护程序、主动分配替换零件,并根据估计的组件寿命使用进展情况做出增强的机队部署决策。
产品描述 L3Harris Hawklink AN/SRQ-4 船载终端是完全合格的通信系统,可满足美国海军 DDG-51、CG-47 和 FFG-7 级舰艇舰队的要求。控制系统采用现代开放系统架构,配备最新的触摸屏界面,便于控制和显示状态。强大的内置测试消除了复杂的支持设备,并减少了物流占用空间。42 英寸定向天线通过实施方位伪单脉冲跟踪同时开环指向仰角以避免水面多径欺骗,从而最大限度地提高链路性能。自动在全向天线和定向天线之间切换,实现从起飞到最大射程的无缝操作。完全合格的天线罩与现有船舶接口相匹配,并针对 Ku 波段进行了优化。
冰探测器由一个振动传感元件(探头)组成,该元件与暴露在气流中的支撑支柱结合在一起。支柱的主要目的是将探头延伸到气流中足够远的地方,以允许液滴撞击传感探头。当冰在传感元件上积聚时,通过传感元件谐振频率的变化可以检测到冰的积聚。电子设备主要由带有嵌入式软件、信号调节和电源硬件的微控制器组成。微控制器计算传感器频率,控制加热器功能,调节输出信号,并执行各种内置测试 (BIT) 功能。内部软件控制两个离散输出信号,这些信号以适合显示遇到的任何结冰情况或机组人员手动激活飞机防冰系统故障的方式与飞机航空电子设备接口。
°C 摄氏度 AAIB 航空事故调查部门 机场以上高度 Aal AC 咨询通告 ACAS 机载防撞系统 AD 适航指令 ADC 大气数据计算机 ADF 自动测向设备 AFCAS 自动飞行控制与增强系统 AMC 可接受的合规方法 平均海平面以上高度 AOM 航空器操作手册 APU 辅助动力装置 ATC 空中交通管制 ATIS 自动终端信息系统 CAA 民航局 CAA-NL 荷兰民航局 CBIT 连续内置测试 cm 厘米 CS 认证规范 CVR 驾驶舱语音记录器 CWS 控制轮转向模式 DC 直流电 DFDR 数字飞行数据记录器 EASA 欧洲航空安全局 EFIS 电动飞行仪表系统 EGPWS 增强型 GPWS EICAS 发动机指示和机组警报系统 EPTS 紧急俯仰配平系统 FAA 美国联邦航空管理局 FCC 飞行控制计算机 FDR 飞行数据记录器 FGS 飞行引导系统 FL 飞行高度层
当今,现代飞机维护和在役支持提供商面临着重大挑战。飞机和其他复杂技术系统的维护和支持的核心问题是管理不断增加的信息流和系统复杂性。军事和商业运营商都需要减少停机时间,而实现这一目标的一种方法是加快计划内和计划外维护的周转时间,甚至更好的方法是通过实施基于条件的维护来减少停机需求。为了在全球支持环境中实施这些改进的支持解决方案,电子维护被视为一个重要的构建模块。电子维护包括全天候 (24/7) 监控、收集、记录和分发实时系统健康数据、维护生成的数据以及其他决策和绩效支持,不受组织或地理位置的限制。电子维护有可能改善与维护过程相关的活动的管理和性能,从而提高关键系统的可靠性、安全性和生命周期成本。这是通过在整个维护和支持过程中应用信息和通信技术 (ICT) 来实现的,从而整合了内置测试、不同维护层级的外部测试、技术信息、诊断、预测和其他支持信息来源。目的
IS&S 数字大气数据计算机 (DADC),P/N 9B-81116-1 是为 F-5N 和 F-5F 飞机开发的航空电子设备升级。它是 P/Ns 948312-9-1 和 2100756-3-1 中央大气数据计算机的直接形式、配合和功能替代品。DADC 处理静压和皮托管压力 (Ps 和 Pt)、总温 (Tt) 和局部攻角 (AOA) 输入数据。这些输入用于计算主飞行显示器、导航、飞行控制和其他飞机系统的准确大气数据信息。还提供广泛的内置测试。DADC 执行多种数据处理功能以确定其输入的有效性、计算输出数据并指示操作状态以及输出有效性。它执行各种信号处理功能,将输出格式化为模拟、离散和串行数据信号,使其与各种接口兼容。DADC 提供的空中数据信息支持包括驾驶舱仪表、稳定性增强系统 (SAS)、领先计算光学瞄准器 (LCOS)、机动襟翼控制和其他仪表和飞行控制系统在内的设备的运行。9B-81116-1 DADC 还取代了 P/N 34-60935-1 襟翼控制高度开关和 P/Ns 11177 -1 和 -3 AOA 切换组件。其他功能包括双 ARINC 429 输出和 MIL-STD-1553B 接口。
联合任务规划系统 (JMPS) (Proj 2213) 是海军指定的自动化任务规划系统,支持美国海军和海军陆战队的 40 多种类型/型号/系列 (T/M/S) 飞机和远征军。JMPS-M(海上)通过提供快速规划飞机、武器或传感器任务、将任务数据加载到飞机和武器中、进行任务演练、执行任务和进行任务后分析所需的信息、自动化工具和决策辅助,实现武器系统的使用。JMPS-E(远征)是一种可扩展、可定制且协作的基于 Web 的任务规划和执行监控工具,适用于每个两栖战备大队 (ARG) 和远征打击大队 (ESG) 的两栖中队 (PHIBRON) 参谋人员。电子膝板 (EKB) 是一种移动设备,配置了各种软件应用程序和功能,以支持机组人员进行飞行前规划、飞行中重新规划和任务执行以及任务后汇报和分析。通用弹药 BIT/重新编程设备 (CMBRE) (Proj 2213) 为 USN/USMC 部队提供了执行内置测试和编程/重新编程各种武器的关键能力。2020 财年及以后包括用于研究和开发的资金,以便开发 CMBRE 系统的升级,以支持先进的作战能力,解决系统过时问题,满足网络安全要求并满足任务准备要求。
非 MDE:还包括可认证地面控制站;TPE-331-10-GD 发动机;M299 地狱火导弹发射器;KIV-77 加密贴花和其他敌我识别 (IFF) 设备;KOR-24A 小型战术终端 (STT);AN/SSQ-62F、AN/SSQ-53G 和 AN/SSQ-36 声纳浮标;ADU-891/E 适配器组测试仪;通用弹药内置测试 (BIT) 重新编程设备 (CMBRE);GBU-39B/B 战术训练弹、武器装载机组教练机和仪表可靠性评估车辆;便携式飞行前/飞行后设备 (P3E);CCM-700A 加密设备;KY-100M 窄带/宽带终端;KI-133 加密单元; AN/PYQ-10 简易钥匙装载机;自动识别系统 (AIS) 应答器;ROVER 6Si 和 TNR2x 收发器;MR6000 超高频 (UHF) 和甚高频 (VHF) 无线电;Selex SeaSpray 有源电子扫描阵列 (AESA) 监视雷达;HISAR-300 雷达;SNC 4500 自动电子监视措施 (ESM) 系统;SAGE 750 ESM 系统;Due Regard 雷达 (DRR);MX-20 电光红外 (EO-IR) 激光目标指示器 (LTD);Ku 波段 SATCOM GAASI 可移动地面站 (GATES);C 波段视距 (LOS) 地面数据终端;AN/DPX-7 IFF 应答器;紧凑型多波段数据链 (CMDL);初始备件和维修零件、消耗品、配件以及维修和退货支持;安全通信、精确导航和加密设备;弹药支持和支持设备;测试和集成支持和设备;机密和非机密软件交付和支持;机密和非机密出版物和技术文档;人员
摘要 当系统级测试(例如内置测试 (BIT))指示故障但在维修期间未发现此类故障时,会发生未发现故障 (NFF) 事件。随着越来越多的电子设备受到 BIT 的持续监控,间歇性故障更有可能触发要求采取维护措施,从而导致 NFF。NFF 经常与误报 (FA)、无法复制 (CND) 或重新测试 OK (RTOK) 事件混淆。NFF 是由 FA、CND、RTOK 以及许多其他复杂因素引起的。尝试修复 NFF 会浪费宝贵的资源、损害对产品的信心、造成客户不满,而且维修质量仍然是个谜。以前的研究表明,大多数要求采取维修措施的故障迹象都是无效的,这使问题更加复杂。NFF 可能是由实际故障引起的,也可能是误报的结果。了解问题的原因可能有助于我们区分可以修复的被测单元 (UUT) 和不能修复的被测单元 (UUT)。在计算真正的维修成本时,我们必须考虑尝试修复无法修复的 UUT 而浪费的精力。本文将阐明这种权衡。最后,我们将探索以经济有效的方式处理 NFF 问题的方法。简介 系统级测试有多种形式,并且出于各种原因而运行。在生产中,运行系统测试是为了确保产品已准备好供最终用户使用,在军事术语中通常称为准备发布或 RFI。它还用于确保持续运行,并以内置测试 (BIT) 的形式实现。由此可见,当最终用户执行正常系统操作时,系统测试也可视为正在运行。他/她可能会观察到异常和不一致,从而需要采取修复措施。我们在本文中使用的系统级测试将涵盖所有这些形式。当系统级测试失败时,一个或多个被测子系统单元 (UUT) 被怀疑是系统故障的根源。系统级维修包括更换可疑的 UUT 并将更换的 UUT 发送到仓库级维修设施,通常是工厂。图 1 显示了系统级测试中发现的故障结果,它们在持续性故障和未发现故障之间分布。持续性故障 (PF),有时也称为确认故障,是导致系统级测试失败并将导致仓库中的 UUT 也发生故障的故障。NFF 有两类。我们称它们为持续性故障,以表明系统级故障持续到车库。相反,NFF 将在车库通过 UUT 测试。如 [1] 中所述,大多数系统测试失败都是由系统级误报 (FA) 引起的。[2] 详细介绍了由间歇性故障 (IF) 导致的 NFF。图 1 还说明了逃避系统级测试的故障。它们在系统级创建 NFF。这种现象的常见情况是计算机挂起,通过重新启动软件可以“修复”。没有采取任何维护措施,也没有任何子系统返回车库或工厂,因此 NFF 不会渗透到车库。除非问题重复多次,否则将被视为正常异常,并避免可能导致维修站出现 NFF 的情况。为了避免混淆,理解我们在本文中使用的术语非常重要。未发现故障 (NFF) 是指 UUT 在维修站测试站通过第一次测试的情况。间歇性故障 (IF) 是仅在某些条件下暴露的真实故障。当它们不暴露时,会导致 NFF。误报 (FA) 是在系统级别指示没有故障的故障。[3] 或者,FA 可以定义为在不需要任何维护操作时发出维护操作请求。[1] 系统级 FA 可能会将一些子组件送往维修站进行维修,或者如果结果受到质疑,则再次运行相同的系统级测试以获得对结果的信心。当系统级测试运行多次时,它会增加区分 FA 和 IF 的可能性,使得返回维修站的 UUT 更有可能是 IF 的结果。