此任务对两种晚期放射疗法技术进行了全面的比较分析,即共面体积调制电弧治疗(CVMAT)和非稳定体积调制型ARC治疗(NCVMAT),用于治疗鼻咽癌。对使用这些技术进行放疗的十名鼻咽癌患者的治疗计划进行了回顾性分析。本研究的重点是剂量学参数,包括对目标体积和关键器官的剂量分布以及这些技术的临床意义。结果表明,尽管CVMAT和NCVMAT在治疗计划质量和整体剂量合规方面均表现出相似的性能,但在递送给特定器官的平均剂量中观察到了显着差异。脑干,内耳,左眼,右腮腺和左肱骨头在两种技术之间的平均剂量显着变化。这些发现突出了为鼻咽癌患者选择最佳放射疗法方法时患者特定考虑的重要性。临床医生应仔细评估个人患者特征和临床优先事项,以做出明智的治疗决策。这项工作提出了实用的解决方案,并为鼻咽癌放射疗法中VMAT技术选择的持续讨论做出了贡献。
TMPRSS3 基因突变患者患有隐性耳聋 DFNB8/DFNB10。对于这些患者,人工耳蜗植入是唯一的治疗选择。一些患者的人工耳蜗植入效果不佳。为了开发针对 TMPRSS3 患者的生物治疗方法,我们构建了一种带有频繁的人类 DFNB8 TMPRSS3 突变的敲入小鼠模型。Tmprss3 A306T/A306T 纯合小鼠表现出与人类 DFNB8 患者相似的延迟性进行性听力损失。使用 AAV2 作为载体携带人类 TMPRSS3 基因,将 AAV2-h TMPRSS3 注射到成年敲入小鼠内耳会导致毛细胞和螺旋神经节神经元中表达 TMPRSS3。在平均年龄为 18.5 个月的 Tmprss3 A306T/A306T 小鼠中注射一次 AAV2-h TMPRSS3 即可持续恢复听觉功能,使其达到与野生型小鼠相似的水平。AAV2-h TMPRSS3 可挽救毛细胞和螺旋神经节神经元。这项研究证明了在人类遗传性耳聋老年小鼠模型中基因治疗的成功。它为开发 AAV2-h TMPRSS3 基因疗法治疗 DFNB8 患者奠定了基础,可作为独立疗法或与人工耳蜗植入相结合。
o ct上颌面(CPT®70486,CPT®70487或CPT®70488)或CT轨道/颞骨(CPT®70480,CPT®70481或CPT®70481或CPT®70482):两者都覆盖了Orbits,sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss and sinsiss。仅当怀疑同时参与更多的后膜病变,尤其是涉及中耳或内耳的区域时,才支持两项单独的成像研究。o垂体:一项研究(MRI脑[CPT®70553]或MRI轨道,面部,颈部[CPT®70543])足以报告垂体的成像。如果据报道先前的常规MRI大脑显示可能的垂体肿瘤,则支持具有专用垂体方案的重复MRI。o内部听觉管:(IAC)MRI可以作为一项有限的研究报告,其中一项代码(CPT®70540,CPT®70542或CPT®70543)可以报告,但不应与MRI脑码结合使用(CPT®70551,CPTER EESIAC),或CPT®70552,或CPT®705552,或CPT®70552,或CPT大脑的一部分。o下颌(下巴):CT上颌面(CPT®70486,CPT®70487或CPT®70488)或CT颈部(CPT®70490,CPT®70490,或CPT®70491或CPT®70492)可用于报告的模糊性图像。CT颈部还将成像下颌空间。
Deepa Galaiya,医学博士(耳鼻喉科助理教授 - 头颈手术)Deepa Galaiya是一名受过奖学金培训的神经科医生和外侧颅底外科医生。她的临床实践专门研究儿童和成人中中耳,内耳,颅底和面部神经障碍的手术和医疗。这包括治疗颅底肿瘤,前庭schwannomas(或声学神经瘤),人工耳蜗,慢性耳部疾病,听力丧失,胆固醇,耳塞,耳脊髓病,脑脊液漏气泄漏和耳痛。她接受了内窥镜耳部手术的训练,这是一种最少的侵入性方法来治疗胆汁脱蛋白瘤和耳膜穿孔,以减少对可见切口的需求。她将为巴尔的摩和华盛顿特区都会区的患者居民提供服务。Galaiya博士的研究兴趣包括开发用于评估电极插入,尖端折叠和基底膜破裂的人耳塞植入的力感应微量毛。她的其他项目涉及用于手术导航的计算机视觉,用于机器人颞骨手术的工具到组织的注册,手术人体工程学的优化以及与合作控制机器人组合的中耳假体放置力的力量评估。财务披露-Deepa Galaiya受约翰·霍普金斯(John Hopkins)非财务披露雇用-Deepa Galaiya没有非财务披露
背景:妊娠期糖尿病是新生儿听力损失的潜在危险因素。妊娠期间母亲体内循环糖分增加会损害微循环,并可能导致内耳先天性异常,从而导致先天性听力损失。糖尿病母亲所生新生儿的耳聋患病率为 4.16%。耳声发射 (OAE) 和脑干诱发反应听力检查 (BERA) 用于评估听力障碍。方法:这项前瞻性病例对照研究由妇产科开展,研究对象为 92 名年龄在 21 至 35 岁之间的产前母亲,根据她们的妊娠期糖尿病状况将她们分为两组。所有这些新生儿均按照通用方案在出生后 72 小时内和第 10 天使用 OAE 进行听力筛查。本研究旨在确定妊娠期糖尿病对新生儿听觉功能的影响。结果:本研究共选取 92 名孕妇,分为 A 组和 B 组,平均年龄为 27.8±5.4 岁。在出生后 72 小时内进行的评估中,A 组 39.1%(18)的新生儿 OAE 未通过,而 B 组仅有 8.7%(4)的新生儿 OAE 未通过。患有妊娠期糖尿病的母亲所生的孩子患先天性听力损失的风险高出 6.7 倍。结论:本研究表明妊娠期糖尿病与新生儿听力障碍之间存在显著关联。与非妊娠期糖尿病母亲所生的新生儿相比,GDM 母亲所生的新生儿 OAE 筛查的失败率更高。关键词:妊娠期糖尿病、新生儿、听力、OAE
氨基糖苷类和顺铂类药物因其在临床治疗各种疾病方面的高效性而被广泛使用,然而,它们的耳毒性副作用值得高度关注。这些药物可以通过特定的通道或转运体进入内耳,不仅影响毛细胞的存活,还会诱导活性氧的过量产生。目前,科学研究主要通过活性氧的下游干预来解决这一问题。然而,最近的研究表明,直接减少毛细胞对这些药物的吸收可以有效避免最初的损伤。特别是,可以通过分子动力学模拟详细探索药物与毛细胞之间的相互作用,以及相关通道和转运体的具体功能。结构生物学领域的迅速发展揭示了与药物吸收密切相关的各种通道和转运体的结构功能,如机电转导通道 (MET) 和有机阳离子转运体-2 等,为新的耳部保护策略提供了理论基础和潜在目标。因此,研究MET通道在耳毒性药物吸收中的调节作用至关重要,这是开发预防和治疗方法的关键。本综述旨在强调听觉毛细胞抑制耳毒性物质吸收的机制,探索如何针对这些通道和转运蛋白开发新的耳部保护方法,并为解决药物引起的耳毒性提供新的视角和策略。以这些通道和转运蛋白为靶点保护毛细胞的方法不仅拓宽了我们对耳毒性潜在机制的理解,而且可以促进听觉保护领域的进一步研究和进展。
摘要X射线检测器是控制剂量效率和图像质量的计算机断层扫描(CT)系统的重要组成部分。所有临床CT扫描仪都使用了闪烁检测器,直到2021年批准了第一个临床光子计数检测器(PCD)系统。这些检测器在两步检测过程中未记录有关单个光子的信息。PCD采用单步过程,该过程将X射线辐射直接转换为电信号。这保留了有关单个光子的信息,可以计算各种能量范围内X射线的数量。更好的空间分辨率,减少碘对比材料的剂量,增强的碘信号,增强的辐射剂量效率以及缺乏电子噪声是PCD的主要好处。具有多个能量阈值的PCD能够将检测到的光子分为两个或多个能量箱,从而可以为每个记录提供能量分辨的数据。在发生双源CT时,除了涉及材料量化或分类的任务外,这还允许高音调或高时间分辨率采集。解剖学的PCDCT成像,出色的空间分辨率可提供临床益处,是该技术最有前途的用途之一。内耳,骨骼,小动脉,心脏和肺部成像中都在其中。光子计数CT将成为主力CT成像系统的未来浪潮。关键字:血管疾病,PCDCT,CCTA,EID,双能CT,泰特尿酸镉,CNR在本审查论文中提供了PCDCT原则,可能的临床益处以及常规CT的局限性以及该CT成像技术的未来发展。
抽象目的是越来越多的人工耳蜗候选者表现出残留的内耳功能,植入物插入过程中的听力保存策略变得越来越重要。手动植入已知会诱导创伤和压力峰。在这项研究中,我们使用经过验证的维特罗模型来全面评估一种新型的手术工具,该工具通过镊子的机动运动来解决这些挑战。使用侧壁电极的方法,我们检查了两个插入的亚组:经验丰富的外科医生手动执行了30次插入,并在同一外科医生的监督下使用机器人辅助系统进行了另外30个插入。我们利用了颞骨的现实,经过验证的模型。该模型准确地再现了摩擦后的摩擦条件,并允许对力学结构,当2型式后压力以及Scala Tympani内电极阵列的位置和变形进行力同步记录。结果,我们与常规程序相比,在机器人辅助插入过程中的力变化显着降低,平均值分别为12 mn/s和32 mn/s。机器人辅助也与强压峰的显着降低和2B降低有关。此外,我们的研究强调,插入工具的释放代表了需要手术训练的关键阶段。与手动技术相比,结论机器人援助表现出更一致的插入速度。它的使用可以显着减少与2肢内创伤相关的因素,从而突出其改善听力保存的潜力。最后,该系统不会减轻随后的手术步骤(例如电极电缆路由和人工耳蜗访问密封)的影响,指向需要进一步研究的领域。
Nesrine Benkafadar是Stefan Heller博士在耳鼻喉科的实验室的博士后研究员 - 头颈外科系和斯坦福大学的干细胞生物学和再生医学研究所。以前,Nesrine获得了Pharm.D。来自阿尔及利亚君士坦丁大学。在对科学兴趣的推动下,她决定通过加入蒙彼利埃神经科学研究所,在法国启动自己的基本和应用研究世界,在那里她获得了工业药学的硕士学位并获得了博士学位。 Jing Wang博士和Jean-Luc Puel的实验室的生物学与健康。Nesrine建立了内耳氧化应激,DNA损伤和细胞衰老之间的功能相互作用。她掌握了分子和细胞生物学方法,以鉴定与新生儿和成年小鼠模型上与DNA损伤相关的信号通路和体内的DNA损伤。她还利用了使用特定抑制剂进行听力保护的信号通路的关键步骤。荣誉毕业后,Nesrine决定加入Stefan Heller博士的实验室,以获取新的经验,新的工作和思维方式以及学习新技术,从而探索其他视野。她的作品着重于在耳毒性损伤后触发和执行鸟类的耳蜗毛细胞再生的一系列事件的表征,并将发现转化为治疗性剥削的小鼠。Nesrine在该领域的一些领导者指导的领域,正在该领域的新兴听觉科学家建立职业生涯。她热衷于有一天找到更好的听力损失治疗方法,并帮助最脆弱的人群,因为不听力会使人们分开,并导致社会戒断和沮丧。
我们的 8 种感觉:远感:视觉、听觉近感:味觉、嗅觉、触觉、本体感觉、前庭加:内感觉前庭:平衡感、保持头部和身体姿势、确定运动方向和速度、感觉身体在空间中的运动、内耳。本体感觉:帮助孩子建立身体意识的感觉。力度感,确定身体在空间中的位置,控制四肢,感觉力量或重量。内感觉:知道身体内部发生了什么的感觉。我们利用近感来滋养感官本体感觉活动 = 阻力活动瑜伽、身体袜、蹦床、治疗球、加重球。• 用于进入恰到好处的状态• 用于组织大脑和身体• 用于创造身体意识前庭活动 = 头部离开直立位置的活动 - 跑步、跳跃秋千、动物散步、滑板车、在治疗球上弹跳。 • 用于警示孩子(将头部移出多个位置) • 用于安抚孩子(头部朝一个线性方向移动) 触觉活动 = 涉及触摸的活动 • 使用增加的触觉输入来提高我们接受触觉输入的能力 • 用于获得调节和减轻压力(深度压力) • 用于警示孩子(轻触) 家庭感觉策略: • 使用图片时间表 • 避免匆忙。尽量减少屏幕时间(电视、视频游戏、电脑)。睡前 1 小时不要看屏幕。 • 在时间表中允许进行各种运动活动。 • 在家中安全的地方。 • 对肌肉和关节进行深度压力的活动始终对神经系统有益。 • 当孩子变得苦恼或失调时,少说话。 • 在 You Tube 上观看梅宁夫人的人行道粉笔感觉运动通路 #2。