摘要:粘膜疫苗接种似乎适合防止SARS-COV-2感染。在这项研究中,我们测试了COVID-19的鼻内粘膜疫苗候选者,该疫苗由阳离子脂质体组成,该阳离子脂质体含有三聚体SARS-COV-2尖峰蛋白和CPG-ODN,CPG-ODN,Toll-Like受体9激动剂,作为辅助物。在体外和体内实验表明该疫苗配方鼻内给药后没有毒性。首先,我们发现皮下或鼻内疫苗接种保护HACE-2转基因小鼠免受野生型(Wuhan)SARS-COV-2菌株的感染,如体重损失和死亡率指标所示。然而,与皮下给药相比,鼻内途径在病毒的肺清除率中更有效,并诱导了较高的中和抗体和抗S IgA滴度。此外,鼻内疫苗接种为关注的伽马,三角洲和Omicron病毒变体提供了保护。Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL).最后,鼻内脂质体配方促进了先前肌肉内疫苗接种与牛津/阿斯利康疫苗诱导的异源免疫力,该疫苗比同源免疫更强大。
图1。 div>获得沃顿明胶CMM的表征和表征。 div>A:第六次通行证中的沃顿大量CMM作物; B:在成骨分化,↑,Ca ++积累和用艾他蛋白红色染色的细胞外磷酸盐中间的细胞; C:掺杂分化的细胞,↑,带有细胞内脂质囊泡,用橄榄红色反应的治疗病变
冠心病 (CHD) 是心血管疾病最常见的临床表现。其特征是心肌缺血,由冠状动脉粥样硬化引起。CHD 是一个重大的全球健康问题,由于生活方式和饮食习惯的重大变化,其患病率逐年增加。人参是一种传统中药材,几个世纪以来一直用于食品制备和传统药物。多项研究表明,人参通过使血糖水平正常化和降低血压、氧化应激、血小板聚集和体内脂质失调来改善心脏功能。本综述介绍了目前对人参缓解 CHD 机制的理解,并为人参作为 CHD 替代疗法的临床开发和应用提供参考。
脂质是一种多样化的疏水分子,对于能量存储,膜结构和信号传导至关重要。脂质代谢的失调与许多疾病有关,包括心血管疾病,肥胖和神经退行性疾病。动脉粥样硬化是心脏病的主要原因,涉及动脉壁内脂质和炎性细胞的积累。在阿尔茨海默氏病中,脂质组成和代谢的变化有助于形成淀粉样蛋白斑块和神经炎症。脂质组学的进步增强了对健康和疾病中脂质作用的理解,有助于治疗方法的发展。基于脂质的药物输送系统(例如脂质体)被广泛用于增强药物的生物利用度和功效。
T2DM和NAFLD之间的主要病理和生理联系是IR [3]。肝脂肪变性和纤维化与IR的发展有关,这反过来又增加了随后的T2DM的风险。一方面,高血糖是肝脏脂肪变性和纤维化发展的有害因素。HEPG2细胞在高血糖条件下通过细胞内脂质积累诱导脂肪变性。发现高血糖引起的炎症会加速NAFLD的进展。此外,三羧酸周期的上调以及Chrebp和LXR-α的表达可以促进细胞中的游离脂肪酸(FFA)积累,刺激肝脏脂质合成,并增加肝细胞中的葡萄糖底物。这种级联反应激活下游纤维化途径,例如通过激活炎症细胞因子IL-1β,IL-6或TNF-α激活炎症体,导致细胞凋亡,并最终导致
脂质转移蛋白 (LTP) 最初被发现为促进体外膜双层之间脂质运输的细胞质因子。从那时起,许多 LTP 已从细菌、植物、酵母和哺乳动物中分离出来,并在无细胞系统和完整细胞中得到了广泛的研究。LTP 领域的一个重大进展与细胞内膜接触位点 (MCS) 的发现有关,细胞内膜接触位点是内质网 (ER) 和其他细胞膜之间的小细胞质间隙,它们加速了 LTP 的脂质转移。由于 LTP 调节细胞膜内脂质的分布,并且许多脂质种类在控制细胞存活、增殖和迁移的关键信号通路中发挥作用,因此 LTP 与癌症相关的信号转导级联有关。越来越多的证据表明 LTP 在癌症进展和转移中发挥着重要作用。本综述描述了不同的 LTP 以及 MCS 如何导致细胞转化和恶性表型,并讨论了“异常”MCS 如何与人类肿瘤发生相关。
目的:这项研究的目的是评估M.15059G>线粒体废话突变对与动脉粥样硬化相关的细胞功能的影响,例如脂性病,炎症反应和线粒体。杂质突变已被提出是线粒体功能障碍的潜在原因,可能会破坏先天免疫反应,并导致与动脉粥样硬化有关的慢性炎症。方法:使用人类单核细胞系THP-1和细胞质杂化细胞系TC-HSMAM1。开发了一种基于CRISPR/CAS9系统的原始方法,并用于消除MT-Cyb基因中携带M.15059G> A突变的线粒体DNA(mtDNA)副本。使用定量聚合酶链反应分析了与胆固醇代谢相关的编码酶的基因的表达水平。使用酶联免疫吸附测定法评估促炎性细胞因子分泌。 使用共聚焦显微镜检测细胞中的线索。 结果:与完整的TC-HSMAM1 CYBRIDS相反,Cas9-TC-HSMAM1细胞在与动脉粥样硬化的低密度脂蛋白孵育后表现出脂肪酸合酶(FASN)基因表达的降低。 发现 TC-HSMAM1 cybrids有缺陷的线粒体,并且无法下调反复脂肪糖刺激后促炎性细胞因子的产生(以建立免疫耐受性)。 去除具有M.15059G>的mtDNA突变导致免疫耐受性的重新建立和正在研究的细胞中线索的激活。促炎性细胞因子分泌。使用共聚焦显微镜检测细胞中的线索。结果:与完整的TC-HSMAM1 CYBRIDS相反,Cas9-TC-HSMAM1细胞在与动脉粥样硬化的低密度脂蛋白孵育后表现出脂肪酸合酶(FASN)基因表达的降低。TC-HSMAM1 cybrids有缺陷的线粒体,并且无法下调反复脂肪糖刺激后促炎性细胞因子的产生(以建立免疫耐受性)。去除具有M.15059G>的mtDNA突变导致免疫耐受性的重新建立和正在研究的细胞中线索的激活。结论:M.15059G>由于单核细胞和巨噬细胞中FASN的上调而导致细胞内脂质的有缺陷,免疫耐受性以及细胞内脂质的代谢受损相关。
丙酸丙酸酯(CP)最初由美国食品药品监督管理局(FDA)批准,用于治疗由于其抗炎症特性而导致的湿疹和牛皮癣等皮肤状况,已成为在Keap-1中以突变为特征的肺癌中的肺癌症的有前途的候选者,在Keap-1中,负责为n ragencultator n n nrf-2 [2] [2] [2] [2]。NRF-2的上调与肺癌患者的预后不良有关,影响了大约三分之一的非小细胞肺癌(NSCLC)。此外,暴露于辐射还激活了NRF-2导致放射线[3,4]。针对NRF-2的小分子抑制剂在使癌细胞对化学疗法的敏感性方面表现出了希望,这表明它们作为放射疗法的佐剂潜力[5]。因此,在当前研究中,CP与辐射相结合,以评估其对Keap-1突变体肺癌细胞敏感的潜力。用CP抑制NRF-2并暴露于辐射促进的铁凋亡诱导,从而增强了NSCLC细胞的放射敏性[6]。铁凋亡,一种由铁内脂质过氧化物诱发的非凋亡细胞死亡的铁依赖性形式,是
临床前模型表明线粒体氧化应激和胰岛素抵抗之间的病因联系。然而,这种机制在人类中的病理生理意义仍然未经证实。在此,我们采用了人类的体内机械方法来操纵线粒体氧化还原状态,同时评估胰岛素作用。为此,我们将脂质过载的静脉输注与摄入线粒体靶向的抗氧化剂(MTAO)与胰岛素钳研究结合使用。在脂质过载期间,胰岛素刺激的肌肉葡萄糖吸收由股动静脉平衡技术确定,MTAO增加了。在肌肉分子水平上,MTAO不影响规范胰岛素信号传导,而是增强了胰岛素刺激的GLUT4易位,同时减轻了脂质过度供应下的线粒体氧化负担。ex vivo研究表明,在暴露于高细胞内脂质水平的肌肉纤维中,MTAO改善了线粒体生物能的特征,包括线粒体H 2 O 2发射的降低。这些发现暗示了线粒体氧化剂在人类脂质诱导的胰岛素抵抗的发展中。
简介 肝脏和脂肪组织控制着体内脂质稳态。长期食用含有大量脂肪的饮食时,这些器官的相互功能障碍可能会加剧与肥胖相关的代谢紊乱 (1)。其中,血脂异常(包括高甘油三酯血症和高胆固醇血症)是肥胖相关代谢失衡的共同特征,可能引发一系列并发症,即所谓的代谢综合征 (2)。此外,肝脏脂肪变性是脂质稳态紊乱的关键致病因素,可加速动脉粥样硬化,并使血脂异常处于肥胖与心血管和代谢疾病风险的交汇点 (3–5)。因此,一种能降低脂肪量膨胀并改善肝脏脂质处理、预防肝脂肪变性和血脂异常的药理学化合物将为治疗与肥胖表型相关的代谢综合征带来重大进展。核糖体蛋白 S6 激酶 1 (S6K1) 在哺乳动物雷帕霉素靶蛋白复合物 1 (mTORC1) 下游起作用,后者控制对激素和有丝分裂原的反应,还协调细胞对营养物质和能量输入的反应 (6)。S6K1 的激活由一系列有序的构象变化和磷酸化步骤介导,其中 mTORC1 对 T389 的磷酸化为磷酸肌醇依赖性激酶 1 (PDK1) 创造了一个对接位点,从而允许 T229 磷酸化 (7)。