1 马萨诸塞大学医学院 RNA 治疗研究所,美国马萨诸塞州伍斯特 01605。2 TriLink BioTechnologies,美国加利福尼亚州圣地亚哥。3 囊性纤维化基金会,CFFT 实验室,美国马萨诸塞州列克星敦 02421。4 马萨诸塞大学医学院生物信息学和整合生物学项目,美国马萨诸塞州伍斯特。5 同济大学生命科学与技术学院,上海 200092。6 麻省理工学院 David H. Koch 综合癌症研究所,美国马萨诸塞州剑桥。7 麻省理工学院化学工程系,美国马萨诸塞州剑桥。8 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥。9 哈佛大学霍华德休斯医学研究所,美国马萨诸塞州剑桥 02138。 10 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 02138。11 麻省理工学院医学工程与科学研究所,美国马萨诸塞州剑桥。12 哈佛-麻省理工学院健康科学与技术分部,美国马萨诸塞州剑桥。13 马萨诸塞大学医学院分子、细胞和癌症生物学系,美国马萨诸塞州伍斯特。14 马萨诸塞大学医学院分子医学系,美国马萨诸塞州伍斯特。15 马萨诸塞大学医学院李伟波罕见疾病研究所,美国马萨诸塞州伍斯特市 Plantation Street 368 号,邮编 01605。✉ 电子邮件:Wen.Xue@umassmed.edu
利比亚的黎波里。摘要背景:腺样囊性癌是涎腺最常见的恶性肿瘤之一,具有侵袭性、复发、远处器官转移和相对放射抗性的特点,使得局部控制难以实现。目的:这项研究的目的是阐明 c-KIT 在基因和蛋白质水平上在涎腺腺样囊性癌发病机制中的作用。材料和方法:通过实时免疫组织化学 (IHC) 和聚合酶链反应 (PCR) 测定总共 52 例涎腺腺样囊性癌标本中的 c-KIT 蛋白表达和基因水平。结果:在所有研究病例中均观察到 c-KIT 抗体的免疫反应性,而通过 DNA 测序检测 c-KIT 基因突变的 13 例病例尽管免疫组织化学呈阳性,但未检测到基因突变。结论:尽管唾液腺腺样囊性癌中 c-KIT 免疫阳性率较高,但基因突变的缺失导致靶向治疗无效。2024 年 11 月 27 日收到;2024 年 12 月 4 日修订;2024 年 12 月 6 日接受 © 作者 2024。在 www.questjournas.org 上以开放获取方式发布
1 苏黎世大学药理学和毒理学研究所,瑞士苏黎世。2 Acuitas Therapeutics Inc.,加拿大不列颠哥伦比亚省温哥华。3 Oncode 研究所,马克西玛公主儿科肿瘤中心,荷兰乌得勒支。4 苏黎世功能基因组学中心,苏黎世联邦理工学院/苏黎世大学,瑞士苏黎世。5 苏黎世联邦理工学院分子健康科学研究所生物系,瑞士苏黎世。6 苏黎世大学医院和大学病理学和分子病理学系,瑞士苏黎世。7 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世。8 Synthego Corporation,美国加利福尼亚州雷德伍德城。9 苏黎世大学生物化学系,瑞士苏黎世。10 苏黎世联邦理工学院基因组工程与测量实验室,瑞士苏黎世。 11 宾夕法尼亚大学医学系,美国宾夕法尼亚州费城。12 苏黎世大学儿童医院代谢与儿童研究中心分部,瑞士苏黎世。13 苏黎世综合人体生理学中心,瑞士苏黎世。14 苏黎世神经科学中心,瑞士苏黎世。15 苏黎世大学分子生命科学研究所,瑞士苏黎世。✉ 电子邮件:ssemple@acuitastx.com;schwank@pharma.uzh.ch
摘要 碱基编辑有可能改善农业中的重要经济性状,并且可以精确地将 DNA 或 RNA 序列中的单个核苷酸转换为最小的双链 DNA 断裂 (DSB)。腺嘌呤碱基编辑器 (ABE) 是最近出现的用于将目标 A:T 转换为 G:C 的碱基编辑工具,但尚未在绵羊身上使用。ABEmax 是 ABE 的最新版本之一,它由催化受损的核酸酶和实验室进化的 DNA 腺苷脱氨酶组成。骨形态发生蛋白受体 1B (BMPR1B) 基因中的 Booroola 繁殖力 (FecB B) 突变 (g.A746G, p.Q249R) 会影响许多绵羊品种的繁殖力。在本研究中,通过使用 ABEmax,我们成功获得了具有确定点突变的羔羊,这些突变导致氨基酸替换 (p.Gln249Arg)。在新生羔羊中,定义的点突变效率为 75%,因为六只羔羊在 FecB B 突变位点 (g.A746G, p.Q249R) 处为杂合子,两只羔羊为野生型。我们在八只经过编辑的羔羊中未检测到脱靶突变。在此,我们报告了由 ABE 生成的首只基因编辑绵羊的验证,并强调了其改善牲畜经济重要性状的潜力。
Parinaud 眼腺综合征 (POGS) 通常很少见,通常表现为单侧眼部炎症,伴有同侧淋巴结肿大。POGS 是由 Bartonella henselae (BH) 引起的猫抓病 (CSD) 的非典型表现。POGS 的诊断具有挑战性,因为它很罕见,并且潜在病因多种多样,包括跳蚤、蜱虫和各种微生物的感染。本病例系列详细介绍了三例归因于 POGS 的 CSD 病例,强调了在缺乏黄金标准诊断方法(即 BH 的聚合酶链反应 (PCR) DNA 检测)的情况下面临的诊断挑战。这些病例涵盖了一系列表现,包括肉芽肿性炎症和淋巴结肿大,可通过抗生素和非药物干预措施(例如家猫的跳蚤控制和猫受伤后的卫生措施)得到有效治疗。这些病例强调了临床上提高警惕的必要性,尤其是对有猫接触史的患者,并呼吁进一步研究改进诊断标准,以便更准确、更实用地检测 CSD,尤其是非典型表现。这在无法进行更具侵入性的病变活检或 BH 的黄金标准 PCR DNA 检测的地区尤其有益,因此在多系统受累的情况下可以立即采取准确的治疗措施。
raav对于基因替代疗法至关重要,将功能基因传递给靶向组织。低电压电子显微镜(LVEM)为有效分析AAV Capsids的结构和质量提供了重要的潜力。基因治疗旨在通过将基因的功能拷贝传递给靶向组织,通常使用诸如AAV之类的病毒矢量来纠正遗传缺陷。这些矢量由封装治疗基因的27 nm直径capsid组成。电子显微镜,包括低温透射电子显微镜(Cryo-TEM),通常用于分析这些病毒颗粒。但是,这些方法通常具有挑战性,需要大型且昂贵的专业设备和条件。
摘要:腺相关病毒(AAV)是基因治疗中DNA递送的常用载体。在这里,我们开发了一个系统,该系统可以通过多步介绍RNA包装组件和AAV REP蛋白的修改来包装mRNA。由此产生的携带mRNA AAVS(RAAVS)保留了常规AAV的大多数特性,包括衣壳组成,病毒形态和组织端主。这些RAAV可以介导mRNA转移到靶细胞和组织中,从而导致功能蛋白的短暂表达。重要的是,静脉注射的RAAV有效地越过了血脑屏障(BBB)并感染了整个小鼠大脑。因此,可以修改DNA病毒载体以进行RNA递送,我们的RAAV代表了第一个高效的BBB跨mRNA递送系统,可通过全脑感染用于治疗目的。
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器 (ABE) 可以可预测地纠正点突变,并且不受 Cas9 诱导的双链 DNA 断裂(导致大量插入/缺失形成)和同源定向修复(通常导致低编辑效率)的影响。本文,我们在成年小鼠中表明,视网膜下注射表达 ABE 的慢病毒和针对 Rpe65 基因中新生无义突变的单向导 RNA 可以纠正致病突变,效率高达 29%,并且插入/缺失和脱靶突变的形成最少,尽管没有典型的 NGG 序列作为原间隔区相邻基序。经 ABE 处理的小鼠显示恢复的 RPE65 表达和类视黄酸异构酶活性,以及接近正常水平的视网膜和视觉功能。我们的发现促使进一步测试 ABE 以用于
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creat iveco mmons. org/licen ses/ by/4. 0/。
。CC-BY-NC-ND 4.0 国际许可证下可用未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是