1 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院系统药理学和转化治疗学系,2 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院遗传学系,3 斯洛文尼亚卢布尔雅那斯洛文尼亚科学与艺术学院研究中心 Jovan Hadzˇi 生物研究所,4 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院转化医学与治疗学研究所,5 美国宾夕法尼亚州费城宾夕法尼亚大学基因组学与计算生物学研究生组,6 美国纽约州纽约美国自然历史博物馆无脊椎动物学分部和萨克勒比较基因组学研究所,7 美国佛蒙特大学生物系,伯灵顿佛蒙特州,8 卢布尔雅那国家生物研究所生物与生态系统研究系,斯洛文尼亚,9 冰岛雷克雅未克大学生命与环境科学学院
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器(ABE)可以可预测地校正点突变,并且独立于CAS9诱导的双链DNA断裂(这会导致实质性的indel形成)和同源性指导的修复(通常会导致较低的编辑效率)。在此,我们在成年小鼠中表明,在RPE65基因中,态慢性病毒的下视网膜下注射表达ABE和单一指导RNA,靶向从RPE65基因进行的无义突变纠正了致病性突变,可纠正效率高达29%的效率,并在indel和oft oft oftarget的突变中均具有最小的效率,但均具有29%的效率,并且是不可或缺的效率。主题。ABE处理的小鼠显示了恢复的RPE65表达和类视黄素异构酶活性,以及视网膜和视觉功能的接近正常水平。我们的发现激发了对
摘要:猫白血病病毒(FELV)是全球猫的逆转录病毒。高病毒载量与进行性感染和宿主死亡有关,这是由于FELV相关疾病而导致的。相比之下,在感染回归的猫中,可以观察到低病毒负荷,有效的免疫反应和更好的临床结局。我们假设通过使用CRISPR/ SA CAS9辅助基因治疗降低逐渐感染的猫的病毒载荷,可以允许该猫的免疫系统将感染引导到回归结果。在朝着这一目标的一步中,本研究评估了不同的腺相关载体(AAV),以使其能够将基因编辑系统传递到猫科动物细胞中,然后研究针对FELV FORIRUS内不同站点的CRISPR/ SA CAS9。九种天然AAV血清型,两种AAV杂种菌株和ANC80L65(硅中的ANC80L65预测AAV祖先)的测试是针对感染不同猫线细胞系和猫科动物原代细胞的潜力。AAV-DJ揭示了较高的感染效率,因此在随后的转导实验中使用。使用CRISPR/ SA CAS9系统的引入12个选定的FELV Profirus站点,由T7核酸内切酶1(T7E1)确认,并通过分解(TIDE)分析来跟踪Indels。在高度保守的GAG和POL区域中发现了非同源末端加入(NHEJ)的最高百分比(最高80%)。随后的转导实验,使用AAV-DJ确认了indel的形成,并显示了某些靶标的FELV P27抗原的显着降低。在体外使用CRISPR/ SA CAS9方法时,FELV病毒的靶向是有效的。观察到的靶向病毒靶向的程度是否足以提供逐渐感染的FELV感染的猫来克服感染的手段,需要在体内进一步研究。
通过特异性校正治疗遗传病的概念几十年来一直是生物医学领域的焦点。理想的解决方案是提供一种精确的方法来永久修复此类突变而不会引入新的错误。早期的基因编辑尝试涉及使用锌指核酸酶、TALEN 和 CRISPR-Cas9 核酸酶在特定位点引入双链断裂,以刺激与外源供体 DNA 模板的同源重组以纠正缺陷。然而,这些技术也会以高频率引入插入/缺失。在这里,我们评估了瞬时 mRNA 治疗引入永久性单碱基编辑的潜力。碱基编辑器通过创新的改良 Cas9 系统提供了在体内纠正单点突变的潜力。胞嘧啶碱基编辑器 (CBE) 使用与胞嘧啶脱氨酶和尿嘧啶 DNA 糖基化酶抑制剂融合的 Cas9 切口酶。当引导链将胞嘧啶-鸟嘌呤碱基对导向基因组中的特定位置时,小窗口中的胞嘧啶-鸟嘌呤碱基对会高效地转化为胸腺嘧啶-腺嘌呤对,且插入/缺失最少。同样,腺嘌呤碱基编辑器 (ABE) 使用实验室进化的与 Cas9 切口酶融合的脱氧腺苷脱氨酶将腺嘌呤-胸腺嘧啶碱基对转化为胞嘧啶-鸟嘌呤对。与基于核酸酶的方法相比,使用碱基编辑器可增加靶向编辑频率,同时大大减少脱靶插入/缺失的形成。与病毒载体和质粒相比,mRNA 具有以下主要优势:1) 降低载体整合风险;2) 能够编辑难以转染的非分裂细胞,因为 mRNA 靶标是细胞质而不是细胞核;3) 可在体内重复给药,这对于病毒载体来说具有挑战性,因为衣壳存在免疫反应;4) 瞬时表达,这对于最大限度提高基因组编辑应用的特异性非常理想。在这项研究中,我们比较了 HEK293 细胞中经过序列优化、化学修饰的 CBE 和 ABE mRNA。Western blot 分析显示,与未修饰的 mRNA 相比,经过 5-甲氧基尿苷修饰、经过序列优化的 mRNA 表达更高。在培养细胞中,mRNA 的编辑频率高于质粒载体。我们展示了使用一个碱基编辑器 mRNA 同时编辑多个位点以及编辑以前无法访问的基因组位点的能力。这些结果证明了碱基编辑技术的深远潜力。最后,我们开发了一种小鼠模型,使用注射到小鼠受精卵中的 BE4max 变体 mRNA,该模型将用于在未来的研究中测试体内 ABE 校正。
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国
血色素沉着症是白人种群中最常见的遗传代谢疾病之一,主要起源于HFE基因中的纯合C282Y突变。g>在基因的845位置的转变会导致HFE蛋白的折叠折叠,最终导致其在细胞膜上不存在。因此,与转素受体1和2缺乏相互作用导致系统性铁超载。我们在高度精确的细胞培养分析中筛选了潜在的GRNA,并应用了表达腺嘌呤基础编辑器ABE7.10的AAV8拆分矢量,并在129- HFE TM.1.1.1NCA小鼠中筛选了我们的候选GRNA。在这里,我们表明我们的治疗载体单次注射导致基因校正率> 10%,并且肝脏中铁代谢的改善。我们的研究提出了针对影响人类最常见的遗传疾病之一的靶向基因矫正疗法的概念验证。
抽象的背景肿瘤腺病毒(OADS)是实体瘤的临床测试最多的病毒载体。然而,大多数临床测试的“武装” OADS在各种实体瘤患者中的抗肿瘤作用有限,即使剂量增加和多次注射。我们开发了一种二元溶瘤/辅助辅助腺病毒系统(CADVEC),其中肿瘤与OAD和非重复辅助辅助辅助辅助AD(HDAD)共同感染。我们最近证明,表达白介素12的单一低剂量CADVEC,编程的死亡配体1个阻滞剂和HSV胸苷激酶安全开关(CADTRIO)会诱导患者的显着抗肿瘤作用,包括完全反应。与以前的OAD研究类似,所有患者在治疗后主要放大AD特异性T细胞,但是,CadVec即使以低剂量下的100倍,CADVEC仍然能够诱导临床反应。解决了患者中介导的抗肿瘤效应机制的方法,我们使用酶联的免疫吸附物点(ELISPOT)分析了患者样品,以测量T-Cell特异性和定量聚合酶链链反应(QPCR),以测量CADVEC病毒基因组拷贝在Tumor的位置。然后,我们使用活细胞成像评估了体外CADVEC功效的潜在机制。基于这些结果,我们开发了一种新的CADVEC,另外表达了针对CD44V6的T细胞参与者分子,以重定向与癌症干细胞群体(CADTETRA)相关的肿瘤无关的T细胞,以进一步改善局部CADVEC治疗。我们在体外和体内测试了其对不同癌症类型的功效,包括AD预免疫的人源化小鼠。结果我们发现,HDAD感染的细胞通过免疫调节转基因逃脱了具有增强肿瘤特异性T细胞活性的AD特异性T细胞识别。由于CADVEC治疗最初在患者中扩增了AD特异性T细胞,因此我们通过表达CD44V6。从CADTETRA咬合,将这些病毒特异性T细胞重新指导为靶向肿瘤细胞。cadtetra显着控制了肿瘤的生长,在免疫学上“热”和“冷”肿瘤中针对癌细胞的局部和全身反应
1 法国巴黎城市大学 INSERM UMR1163 想象研究所染色质和发育过程中基因调控实验室;2 法国巴黎巴黎公立医院内克尔儿童医院生物治疗临床研究中心;3 法国巴黎巴黎城市大学 INSERM UMR1163 想象研究所人类淋巴造血实验室;4 法国巴黎巴黎公立医院内克尔儿童医院生物治疗系;5 法国巴黎巴黎城市大学 INSERM UMR1163 想象研究所生物信息学平台;6 意大利米兰圣拉斐尔科学研究所 (IRCCS) 里维埃拉与克拉特雷松基因治疗研究所 (SR-TIGET); 7 生命健康圣拉斐尔大学,米兰,意大利
优化具有一致质量的重组腺相关病毒(RAAV)的上游和下游过程取决于快速介绍关键质量属性(CQAS)的能力。在RAAV产生的背景下,将病毒滴度,衣壳含量和聚集鉴定为潜在的CQA,影响RAAV介导的基因治疗产物的效力,纯度和安全性。 测量这些属性的分析方法通常会遭受较长的周转时间或较低的吞吐量来开发过程,尽管快速,高通量方法开始开发和商业化。 这些方法在学术或工业实践中尚未确定,并且很少数据。 在这里,我们审查了对Raav质量量化的量化和即将到来的分析方法。 此外,我们确定从传统方法过渡到新方法的关键挑战是后者缺乏学术和工业经验。 本文献综述为选择质量属性的分析方法提供了ASA指南,以在RAAV介导的基因疗法的过程开发过程中快速,高通量过程表征。将病毒滴度,衣壳含量和聚集鉴定为潜在的CQA,影响RAAV介导的基因治疗产物的效力,纯度和安全性。测量这些属性的分析方法通常会遭受较长的周转时间或较低的吞吐量来开发过程,尽管快速,高通量方法开始开发和商业化。这些方法在学术或工业实践中尚未确定,并且很少数据。在这里,我们审查了对Raav质量量化的量化和即将到来的分析方法。此外,我们确定从传统方法过渡到新方法的关键挑战是后者缺乏学术和工业经验。本文献综述为选择质量属性的分析方法提供了ASA指南,以在RAAV介导的基因疗法的过程开发过程中快速,高通量过程表征。
♦ 毛细管电泳 (CE) 是一种分离技术,利用施加的电压根据离子的电泳迁移率来分离离子。♦ 在毛细管凝胶电泳中,分子通过电流通过聚合物凝胶基质分离♦ 通过凝胶的运动基于分子的大小、形状和电荷♦ 十二烷基硫酸钠 (SDS) 使大多数蛋白质变性,并根据蛋白质的大小以相等的比例结合蛋白质,从而产生均匀的电荷质量比。