高准确电压检测电路过度充电检测电压3.5 V至4.5 V至4.5 V(5 mV步)精度20 mV(TA = ta = c 25°C)精度25mV(TA =10°C至60°C)至60°C)至60°C至60°C释放了3.1 V至4.5 V *1 c ander vy v focure 2.0 cony 4 30 m V *30m V *30 mv *30 mv *30 mv * v(10 mV步)精度35 mV过度释放电压2.0 V至3.4 V *2精度50 mV排放过电流检测电压0.05 V至0.20 V至0.20 V至0.20 V(10 mV步骤)精度10 mV 10 mV电荷电荷过电压检测电压0.20V 0.20 V 0.20 V 0.05 V(25 mV)的准确度(25 mV)精确•25 mV sepry cecrutive cecrutive cecruct内部电路(外部电容器是不必要的)。准确性20%高使用的电压(VM PIN和CO PIN:绝对最大额定值= 28 V)0V电池电荷功能“可用” /“不可用”。Div>降低功能“可用” /“不可用”。广泛的操作温度范围TA =40°C至85°C操作过程中的低电流消耗2.8 A型,5.0a最大。(ta = c 25°C)在功率下降0.1a最大。(TA = 2 25°C)无铅(SN 100%),无卤素 *1。过度充电释放电压=过度充电检测电压过度充电磁滞电压(可以在50 mV步骤中选择为0 V或从0.1 V至0.4 V范围选择。*2。过度释放释放电压=过度放电检测电压chardycharge滞后电压(过度放电磁滞电压可以作为0 V或从100 mV步骤中的0.1 V至0.7 V范围选择。)应用程序
1.0简介本手册为Ziton无线电循环模块提供了编程指南。Ziton无线电环模块由无线电收发器组成,能够接收31个无线电设备。提供LCD显示以及功能按钮,以允许对关联设备进行编程和诊断。Ziton Radio Loop模块能够通过其循环和外连接终端连接到ZP协议火灾警报控制面板循环。无线电循环模块通过其板载8路倾角开关在循环上解决。总共可以将2个无线电循环模块安装在火警控制面板上。与Ziton无线电环模块一起使用的兼容产品如下; Part Number – ZR485-3 Radio manual call point Part Number – ZR432-2 Radio multisensor detector Part Number – ZR455-3R Red radio sounder Part Number – ZR455-3W White radio sounder Part Number – ZR455V-3RC Red radio sounder with clear beacon Part Number – ZR455V-3RR Red radio sounder and red beacon Part Number – ZR455V-3RA Red radio带有琥珀色信标零件号的声音 - ZR451-3单输入输出单元1.1系统设计所有安装工作均应根据调查和系统设计进行。建议根据无线电调查和系统设计,Ziton无线电循环模块和外围设备定位。应该在安装工作开始之前建立这一点。1.2处理预防措施一般;处理Ziton无线电循环模块时,应注意注意。避免将任何零件放在坚硬的表面上,因为外壳和内部电路可能会造成损坏。1.3包装:ESD预防措施; Ziton无线电环模块包括容易受到电静电排放(ESD)损坏的组件。如果未观察到预防措施,可能会通过常规处理对这些组件造成永久损害。为了减少ESD损害的风险,应观察到以下预防措施。最大程度地减少包含静态敏感设备的PCB的处理。在不可避免的情况下进行处理,请始终确保您采取了足够的接地预防措施。建议使用接地的腕带。在存储或运输“松动” PCB时,请始终使用具有ESD保护特性设计和制造的容器。避免将静态敏感设备放在塑料表面上,这可能会增加静态排放的风险。
• High-accuracy voltage detection circuit Overcharge detection voltage 3.500 V to 4.800 V (5 mV step) Accuracy ±15 mV Overcharge release voltage 3.100 V to 4.800 V *1 Accuracy ±50 mV Overdischarge detection voltage 2.000 V to 3.000 V (10 mV step) Accuracy ±50 mV Overdischarge release voltage 2.000 V to 3.400 V *2准确性±75 mV放电过电流1检测电压5 mV至100 mV(0.5 mV步)精度±1.5 mV排放过电流2检测电压10 mV至100 mV至100 mV(1 mV步骤)精度±3 mV载荷量±3 mV载荷载荷量短,可检测20 mV至100 mV(1 mV)的精度3毫米1 mv 1 mv 1 mv 1 mv 1 mv 5 5 mv 5 5 mv 5 5 mv;步骤)准确性±10 mV电荷过电流检测电压-100 mV至-5 mV(0.5 mV步)精度±1.5 mV•仅通过内部电路(不必要外部电容器)生成检测延迟时间。•放电过电流控制功能释放出排出过电流状态的条件:负载断开释放电压过电流状态的电压:放电过电流释放电压(v riov)= v dd×0.8(typ。)•0 V电池充电:启用,抑制•功率功能:可用,不可用•高功能电压:VM PIN和CO PIN:绝对最大额定值28 V•宽操作温度范围:TA = -40°C至 +125°C•操作过程中低电流消耗量:2.0 µA typ,4.0 µA typ.4.0 µ µA typ。(ta = +25°C)在降压期间:最大50 Na。(TA = +25°C)过度过度:最大0.5 µA。(TA = +25°C)•无铅(SN 100%),无卤素•AEC-Q100的过程 *3 *1。过度充电释放电压=过度充电检测电压 - 过度充电磁滞电压(可以在50 mV步骤中选择为0 V或从0.1 V至0.4 V范围选择。*2。过度释放释放电压=过度放电检测电压 +过度放电磁滞电压(过度放电磁滞电压可以作为0 V或从100 mV步骤中的0.1 V至0.7 V范围选择。)*3。请联系我们的销售代表以获取详细信息。应用程序
本 IC 是锂离子 / 锂聚合物充电电池的高端保护 IC,包含高精度电压检测电路、延迟电路和三重升压充电泵,用于驱动外部充电 / 放电 FET。适用于保护 1 节锂离子 / 锂聚合物充电电池组免受过充电、过放电和过电流的影响。通过使用外部过电流检测电阻,本 IC 实现了高精度过电流保护,且受温度变化的影响较小。 特点 ● 高精度电压检测电路 过充电检测电压 3.500 V ~ 4.800 V (5 mV 进阶) 精度±15 mV 过充电解除电压 3.100 V ~ 4.800 V *1 精度±50 mV 过放电检测电压 2.000 V ~ 3.000 V (10 mV 进阶) 精度±50 mV 过放电解除电压 2.000 V ~ 3.400 V *2 精度±75 mV 放电过电流 1 检测电压 -3 mV ~ -100 mV (0.25 mV 进阶) 精度±1 mV 放电过电流 2 检测电压 -6 mV ~ -100 mV (0.5 mV 进阶) 精度±3 mV 负载短路检测电压 -20 mV ~ -100 mV (1 mV 进阶) 精度±5 mV 充电过电流检测电压3 mV ~ 100 mV(0.25 mV 进阶) 精度±1 mV 0 V 电池充电禁止电池电压 1.45 V ~ 2.00 V *3(50 mV 进阶) 精度±50 mV ● 过热检测功能:有、无 ● 带外置 NTC 热敏电阻的高精度温度检测电路(阻值:25°C 时 100 kΩ±1% 或 470 kΩ±1%,B 常数:±1%) 过热检测温度 +65°C ~ +85°C(5°C 进阶) 精度±3°C 过热释放温度 +55°C ~ +80°C(5°C 进阶)*4 精度±5°C ● 内置电荷泵:三重升压(调节电压 = V DD + 4.2 V) ● 检测延迟时间仅由内部电路产生(不需要外置电容器)。 ● 放电过电流控制功能 放电过电流状态的解除条件 : 断开负载、连接充电器 ● 0 V 电池充电 : 允许、禁止 ● 休眠功能 : 有、无 ● 省电功能 : 有、无 ● PS 端子内部电阻连接 通常状态下 : 上拉、下拉 省电状态下 : 上拉、下拉 ● PS 端子内部电阻值 : 1 MΩ ~ 10 MΩ (1 MΩ 进阶单位) ● PS 端子控制逻辑 : 动态 "H"、动态 "L" ● 高耐压 : VM 端子、CO 端子和 DO 端子 : 绝对最大额定值 28V ● 宽工作温度范围 : Ta = -40°C ~ +85°C ● 低消耗电流 工作时 : 6.0 µA 典型值、10 µA 最大值 (Ta = +25°C) 休眠时 : 50 nA 最大值 (Ta = +25°C) 过放电时 : 1.0 µA 最大值(Ta = +25°C) 省电时:50 nA(最大值) (Ta = +25°C) ● 无铅、Sn100%、无卤素 *5
我们希望为您节省时间和金钱!我们向您保证,通读本手册将确保正确安装和安全使用所述产品。 重要警告 CAREL 的产品开发基于数十年的 HVAC 经验、对产品技术创新的持续投资、程序和严格的质量流程(对其 100% 的产品进行在线和功能测试)以及市场上最具创新性的生产技术。尽管产品是根据最先进的技术开发的,但 CAREL 及其子公司无法保证产品的所有方面以及产品随附的软件都符合最终应用的要求。客户(最终设备的制造商、开发商或安装商)承担与产品配置有关的所有责任和风险,以达到与特定最终安装和/或设备相关的预期结果。根据具体协议,CAREL 可充当最终设备/应用的积极调试顾问,但在任何情况下,它都不对最终设备/系统的正确运行承担责任。CAREL 产品是最先进的产品,其操作在产品随附的技术文档中指定,也可以在购买前从网站 www.carel.com 下载。每款 CAREL 产品,就其先进的技术水平而言,都需要设置/配置/编程/调试,才能以最佳方式运行特定应用。未能完成用户手册中要求/指示的此类操作可能会导致最终产品发生故障;CAREL 对此不承担任何责任。只有合格人员才可以安装或对产品进行技术服务。客户必须仅按照与产品相关的文档中描述的方式使用产品。除了遵守本手册中所述的任何其他警告外,还必须注意所有 CAREL 产品的以下警告:• 防止电子电路受潮。雨水、湿气和所有类型的液体或冷凝水都含有腐蚀性矿物质,可能会损坏电子电路。无论如何,产品应在符合手册中规定的温度和湿度限制的环境中使用或存放。• 请勿将设备安装在特别热的环境中。过高的温度可能会缩短电子设备的使用寿命、损坏电子设备并使塑料部件变形或熔化。无论如何,产品应在符合手册中规定的温度和湿度限制的环境中使用或存放。• 请勿尝试以手册中未描述的任何方式打开设备。• 请勿掉落、撞击或摇晃设备,因为内部电路和机制可能会受到不可修复的损坏。 • 请勿使用腐蚀性化学品、溶剂或侵蚀性清洁剂清洁设备。 • 请勿将产品用于技术手册中未指定的用途。 所有上述建议同样适用于控制器、串行板、编程密钥或 CAREL 产品组合中的任何其他附件。 CAREL 采用持续发展的政策。因此,CAREL 保留对本文档中描述的任何产品进行更改和改进的权利,恕不另行通知。手册中显示的技术规格可能会更改,恕不另行通知。 CAREL 对其产品的责任在 CAREL 一般合同条件中指定,可在网站 www.carel.com 上查阅和/或通过与客户达成的具体协议查阅;具体而言,在适用法律允许的范围内,CAREL、其员工或子公司在任何情况下均不对任何收益或销售损失、数据和信息损失、更换商品或服务的成本、物品或人员损害、停机或任何直接、间接、偶然、实际、惩罚性、示范性、特殊或结果性损害(无论是合同损害、合同外损害还是因疏忽造成)或因安装、使用或无法使用产品而产生的任何其他责任负责,即使 CAREL 或其子公司已被警告有此类损害的可能性。
分类为电导体的材料具有有效携带或运输电流的能力,而由于内部电子的移动有限,绝缘子无法这样做。电子流经物质的易于性主要取决于它们可以轻易地经过其原子和原子核的方式。铁和钢等材料是示例性的导体,而玻璃和塑料等物质的电导率较差。价电子在电导传导中的作用不能夸大;这些最外面的电子与他们的父原子松散结合,并且可以相对容易从其位置移开。易于获得或损失电子的无机材料通常显示高电导率,而有机分子由于将它们固定在一起的强共价键而倾向于绝缘。有趣的是,某些材料可能会根据其组成而表现出不同水平的电导率;例如,纯净水是一种绝缘子,但脏水在某种程度上导致电力。添加杂质或与其他元素掺杂可以显着改变材料的电导率。在电导体中,由于普通条件下的高电导率,银是最好的。然而,它对破坏的敏感性和随后降低电导率的氧化物层的形成不可忽视。相反,经常在需要电流控制的应用中使用强大的绝缘子,例如橡胶,玻璃和钻石。某些材料在极低的温度下成为超导体。材料的形状和大小在确定其电导率水平方面也起着至关重要的作用;较厚的碎片通常表现出比较薄的电导性能更好。此外,温度波动会影响电导率水平,而温度通常会导致材料内的电子迁移率提高。大多数材料根据温度和其他因素表现出不同水平的电导率。凉爽的金属通常是好的导体,而热金属的效率往往降低。传导本身有时会改变材料的温度。在导体中,电子自由流动而不会损害原子或引起磨损。但是,移动电子确实会遇到阻力。因此,流经导电材料的电流会加热它们。金属和等离子体通常是好的导体,这是由于其价电子的移动性。绝缘子通常由有机分子组成,主要由牢固的共价键组合在一起,使电子很难流动。掺杂或杂质等因素也会影响电导率,如纯净水是绝缘体,但由于自由浮动离子而导致的盐水。所有材料都可以根据表1。表1:导体,绝缘体和半导体特性铜是一个众所周知的导体,以最小的对立传递电流。橡胶是一种绝缘子,通常用于涂上用于电动工作的工具手柄。van de Graaff在1930年代。需要极高的电压才能迫使橡胶进入传导。石墨,一种碳的形式,用作半导体,限制了给定电压产生的电流量。在本文中,我们探讨了导体,绝缘体和半导体的一些特征。导体导体是一种对电子流(电流)几乎没有反对的材料。由于其电阻较低,因此通过它产生电流所需的能量很少。最好的导体具有最低的电阻,使其非常适合传输电流。一个原子的价壳决定其电气特性,其价值壳电子和单位体积原子的数量影响电导率。绝缘子绝缘子是具有极高电阻的材料,可防止电流流动。例如,电源线上的绝缘材料可防止电流在接触时到达您。一些元素,例如霓虹灯,是天然绝缘体。用于保护技术人员的常见绝缘子包括橡胶,特氟龙和云母等化合物。正如预期的那样,导体和绝缘子具有相反的特性,绝缘子具有完整的价壳,单位体积的原子很少。半导体的任何表现出导体和绝缘子之间中间电导率的元素都可以视为半导体。半导体:当面对明显的电阻时,导体和绝缘子铜之间具有耐药性的材料最小的对立变得显而易见。当原子紧密相互作用时,它们的能级堆在一起。等式1实现了两个主要目的:它使我们能够计算利息并揭示利息价值及其变量之间的关系。例如,等式1说明$ r = \ rho \ frac {l} {a} $,证明电阻与电阻率,长度和与横截面面积成反比成正比。此外,温度由于温度系数而影响导体的电阻率,导体随着温度的升高而升高。回顾问题概述了导体,绝缘体,半导体的定义,并解释了电导率如何由价电子和原子密度确定。电阻率定义为特定材料体积的电阻,通常以CMIL-ω/FT或ω-CM单位测量。导体表现出正温度系数,表明随着温度升高的耐药性增加。这种基本的理解将材料根据电导率的电导率分类为导体,绝缘体和半导体。例如,如果两个原子连接,则与单个原子相比,相邻能级的数量将是两倍。随着越来越多的原子融合在一起,这种模式继续存在,形成了多个层次的集群。在固体中,许多原子会产生大量的水平,但是大多数高能级均融合到连续范围内,除了根本不存在的特定差距。这些没有级别的区域称为带隙。电子占据的最高能量簇被称为价带。这种现象用于保护与保险丝的电路。导体具有部分填充的价带,具有足够的空位,使电子可以在电场下自由移动。相比之下,绝缘子完全填充了其价带,并在其之间留下了很大的差距。这个较大的间隙可防止电子移动,除非有足够的能量越过。半导体在价和传导带之间的差距较小。在室温下,由于热能,价带几乎已经满,导致某些电子转移到传导带中,它们可以在外部电场下自由移动。Valence带中留下的“孔”表现就像正电荷载体。温度较高的材料倾向于增加对电流的抵抗力。例如,5°C的温度升高可提高铜的电阻率2%。相反,由于电子在传导带中的填充水平升高,绝缘体和半导体的电阻率降低,它们可以在外部电场下移动。价和导带之间的能量差会显着影响电导率,较小的间隙导致温度较低的电导率较高。分子由于放射性元件和宇宙射线的辐射而分离为离子,使大气导电中的某些气体产生。电泳根据颗粒在电解溶液中的迁移率分离。欧姆加热会在电流流过电线时,如电线或灯泡所示。电阻器中消散的功率由p = i^2r给出。但是,在某些材料中,由于碰撞而导致的能量损失在低温下消失,表现出超导性。发生这种情况是因为电子会失去对声子的能量,但是在超导体中,通过电子和材料之间的复杂量子机械相互作用来阻止这种能量损失。常用的超导体是一种niobium and Titanium合金,它需要冷却至极低的温度才能表现出其性质。在较高温度下发现超导性能彻底改变了各个领域,从而实现了液氮而不是昂贵的液态氦气。这一突破为电力传输,高速计算等中的应用铺平了道路。12伏汽车电池展示了如何通过化学反应或机械手段来利用电动力。Van de Graaff Generator是Robert J.由于其概念上的简单性,这种类型的粒子加速器已被广泛用于研究亚原子颗粒。该设备通过将正电荷运送到绝缘输送带上的正电荷从基部到导电圆顶的内部,在那里将其移除并迅速移动到外面。带正电荷的圆顶会产生一个电场,该电场排斥额外的正电荷,需要工作以保持传送带的转动。在平衡中,圆顶的电势保持在正值下,电流从圆顶流向地面,并通过在绝缘带上的电荷运输均衡。这个概念是所有电动力来源的基础,在该源中,在单独的位置释放了能量以产生伏特细胞。一个简单的示例涉及将铜和锌线插入柠檬中,从而在它们之间产生1.1伏的电势差。“柠檬电池”本质上是一个令人印象深刻的伏特电池,能够仅产生最小的电力。相比之下,由类似材料制成的铜锌电池可以提供更多的功率。此替代电池具有两种溶液:一种含有硫酸铜,另一种含硫酸锌。氯化钾盐桥通过电气连接两种溶液。两种类型的电池都从铜和锌之间电子结合的差异中得出了能量。能量,从电线中取出游离电子。同时,来自电线的锌原子溶解为带正电荷的锌离子,使电线具有多余的自由电子。这会导致带正电荷的铜线和负电荷的锌线,该锌线被盐桥隔开,该盐桥完成了内部电路。一个12伏铅酸电池由六个伏特电池组成,每个电池串联连接时大约产生大约两个伏特。每个细胞都具有并行连接的正极和负电极,为化学反应提供了较大的表面积。由于材料经历化学转换的速度,电池会递送更大的电流。电池电位为1.68 + 0.36 = 2.04伏。在铅酸电池中,每个伏电池都包含纯海绵状铅和氧化铅的正电极的负电极。将铅和氧化铅溶解在硫酸和水中。在正电极下,反应为PBO2 + SO -4- + 4H + + 2e-→PBSO4 + 2H2O +(1.68 V),而在负末端,它是Pb + SO -4-→PBSO4-→PBSO4 + 2e- +(0.36 V)。通过汽车发生器或外部电源为电池充电时,化学反应会反转。60Ω电阻连接到电动力。字母A,B,C和D是参考点。源将点A保持在电势12伏高于点D,从而导致VA和VD之间的12伏的电势差。由于点A和B通过具有可忽略的电阻的导体连接,因此它们具有相同的电势,并且点C和D具有相同的潜力。因此,整个电阻的电势差也为12伏。可以使用欧姆定律计算流过电阻的电流:i = va -vd / rb。代替给定值,我们得到i = 0.2安培。可以使用等式(22):p = i^2 * R计算热量中消散的功率。插入值,我们得到p = 0.04瓦。当热量来自电动力源时消散的能量。该源在将电荷DQ从点d到点A移动的工作中所做的工作由dw = dq *(va -vd)给出。电池传递的功率是通过将DW除以DT获得的,导致P = 2.4瓦。如果两个电阻串联连接,则等效电阻是个体电阻的总和:rab = r1 + r2。使用R1和R2的给定值,我们获得RAB =7Ω。并行连接两个电阻时,电荷具有从C到D流动的其他路径,从而降低了整体电阻。可以使用等式(20):1/rcd = 1/r1 + 1/r2计算等效电阻的值。代替给定值,我们获得RCD = 1/0.7 =1.43Ω。在阻抗为2欧姆或5欧姆的情况下,值得注意的是,这些方程式可以相对轻松地适应多种电阻。