摘要:头颈部鳞状细胞癌 (HNSCC) 的治疗方案通常包括顺铂和放射疗法,但受到毒性的限制。我们已经确定从长叶酸浆中天然提取的三乙酸三乙酸酯 (WGA-TA) 是靶向 HNSCC 的先导化合物。我们假设将 WGA-TA 与顺铂结合使用可以降低顺铂的剂量,并降低其毒性。用 WGA-TA 和顺铂处理 HNSCC 细胞系。用药物治疗后,通过 MTS 测定确定细胞活力。使用 CompuSyn 计算组合指数。通过蛋白质印迹法测量了涉及靶向翻译起始复合物、上皮-间质转化 (EMT) 和细胞凋亡的蛋白质的表达。使用 Boyden-chamber 测定法测量侵袭和迁移。单独用 WGA-TA 或顺铂处理 MDA-1986 和 UMSCC-22B 细胞系 72 小时,导致细胞活力呈剂量依赖性下降。顺铂与 WGA-TA 联合使用,从 1.25 µ M 顺铂开始,导致显著的协同细胞死亡。与 WGA-TA 联合治疗可降低顺铂剂量,同时保持翻译起始复合蛋白的下调、细胞凋亡的诱导以及迁移、侵袭和 EMT 转变的阻断。这些结果表明,将低浓度的顺铂与 WGA-TA 联合使用可为 HNSCC 提供更安全、更有效的治疗选择,值得进行转化验证。
这种化合物。特别是,针对其治疗活性和作用方式的科学研究很少。然而,它的非对映异构体藤黄酸(从藤黄果中提取)是市售的并且得到了充分研究。关于芙蓉酸提取、性质和化学特性的最具代表性的证据已由 Zheoat 等人(2019 年)和 Portillo-Torres 等人(2019 年)[6- 7] 分析。晶体学分析和 X 射线光谱证实,芙蓉酸是一个五元内酯环,具有四个碳原子和一个氧原子。C3(sp2)具有双键氧原子,C1 具有 OH 基团和 COOH 基团,C2 具有 COOH 基团(图 1)[8]。除了藤黄酸和芙蓉酸外,我们的研究还包括从玫瑰茄中提取的其他相关化合物,如图 1 所示。
葡萄酒微生物群落建立了复杂的生态系统,调节香气化合物的形成,但只有少数研究寻求特定微生物与葡萄酒挥发性物质之间的相关性。本研究结合了代谢条形码和代谢组学,以识别与杜罗河标志性地区 3 个著名品种的葡萄酒挥发性特征相关的真菌和细菌微生物生态位。在整个自然发酵过程中,鉴定了三个主要的微生物生态位,并且 Hanseniaspora - Saccharomyces 的演替时间取决于品种。最大的生态位包括 Hansenias pora、Aureobasidium、Alternaria、Rhodotorula、Sporobolomyces、Massilia、Bacillus、Staphylococcus 和 Cutibacterium,它们与 7 种代谢物呈正相关,即乙偶姻、乙酸异戊酯、丙酸乙酯、c-3-己烯醇、苯乙醚和 4-乙基苯酚。发酵酵母S. cerevisiae、Torulaspora delbrueckii和Meyerozyma caribbica与γ-丁内酯、t-威士忌内酯、异戊醇、癸酸乙酯、异丁酸乙酯、琥珀酸二乙酯、异戊酸、4-乙基愈创木酚和4-丙基愈创木酚呈强相关性。 Lachancea quebecensis 与几种致病真菌(青霉菌、白粉病菌、核盘菌、曲霉菌、Mycosphaerella tassiana)和细菌(假单胞菌属、酸拟杆菌、泛菌、Steno trophomonas 和 Enhydrobacter)聚类,与各种单萜醇和降异戊二烯类化合物(包括芳樟醇和 β-紫罗兰酮)呈正相关,此外还与苯甲醇、二乙酰、乙酸异丁酯、乙基香草酸酯和甲基香草酸酯呈正相关。代谢物-微生物群相关性表明品种特异性可能是区域芳香特征的基础。
• 科:黄病毒科;黄病毒属。• 形态:有包膜的球形颗粒,直径 40-60 纳米,具有二十面体核衣壳对称性和表面突起;病毒体含有三种结构蛋白:C(衣壳)、E(主要包膜蛋白)和 M(膜),并产生七种非结构蛋白。M 蛋白是病毒成熟过程中产生的前体 (pr)M 蛋白的小蛋白水解片段。黄热病毒有一种血清型,与七种基因型有关。• 核酸:线性、正义、单链 RNA,长 11 kb • 物理化学特性:在 >56°C 下加热 10 分钟灭活;37°C 下半衰期为 7 小时;对脂质溶剂、去垢剂、乙醚、胰蛋白酶、氯仿、甲醛和β-丙内酯敏感;暴露于辐射后传染性降低,在pH 1 – 3时失活。
B/Phuket/3073/2013 样菌株(B/Singapore/INFTT-16-0610/2016,野生型) 每 0.5 毫升剂量 15 微克 HA** ………………………………………. * 在 Madin Darby 犬肾 (MDCK) 细胞中繁殖 ** 血凝素 该疫苗符合世界卫生组织 (WHO) 建议(北半球)和欧盟对 2021/2022 季节的建议。 Flucelvax Tetra 可能含有微量 β-丙内酯、十六烷基三甲基溴化铵和聚山梨醇酯 80。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 预充注射器中的注射用悬浮液(注射剂)。透明至微乳白色的液体。 4. 临床特点 4.1 治疗适应症 预防成人和 2 岁以上儿童的流感。应按照官方建议使用 Flucelvax Tetra。 4.2 剂量和给药方法 剂量
摘要:倍半萜烯内酯Thapsigargin是一种植物化学物质,在Thapsia L.的地中海植物的根和成果中发现,这些物种已在民间医学中用于治疗风湿性疼痛,肺部疾病,肺部疾病和女性不孕症。最近发现Thapsigargin是一种有效的细胞毒素,可通过抑制肌胞浆/内质网状Ca 2+ ATPase(SERCA)泵来诱导凋亡,这对于细胞生存能力是必需的。这种生物学活性鼓励对使用Thapsigargin作为一种新型抗肿瘤剂的研究,但是由于该化合物对正常细胞的毒性较高而受到阻碍。在这篇综述中,我们总结了有关thapsigargin作用的生物学活性和分子机制的最新知识,以及在合成不太毒性的thapsigargin衍生物中的进步,这些衍生物被开发为新型抗癌药物。
B/Phuket/3073/2013 样毒株(B/Singapore/INFTT-16-0610/2016,野生型) 每 0.5 毫升剂量 15 微克 HA** ………………………………………. * 在 Madin Darby 犬肾 (MDCK) 细胞中繁殖 ** 血凝素 该疫苗符合世界卫生组织 (WHO) 建议(北半球)和欧盟对 2020/2021 季节的建议。 Flucelvax Tetra 可能含有微量 β-丙内酯、十六烷基三甲基溴化铵和聚山梨醇酯 80。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 预充注射器中的注射用混悬液(注射剂)。透明至微乳白色的液体。 4. 临床特点 4.1 治疗适应症 预防成人和 9 岁以上儿童的流感。应根据官方建议使用 Flucelvax Tetra。
摘要:纳米颗粒制剂是一种最近开发的具有增强靶向潜力的药物输送技术。纳米颗粒封装所选药物,并通过位于纳米颗粒表面的靶向分子(例如抗原)将其输送到目标。纳米颗粒甚至可以靶向深层穿透组织,并且可以模拟通过血脑屏障输送药物。这些进步为癌症和阿尔茨海默氏症等疾病提供了更好的靶向性。各种聚合物都可以制成纳米颗粒。本文研究的聚合物是聚己内酯 (PCL)、聚(乳酸) (PLA)、聚(乳酸-共-乙醇酸) (PLGA) 和聚(乙醇酸) (PGA)。本研究的目的是分析这些聚合物的机械性能,以确定药物输送趋势并模拟药代动力学和生物运输。我们发现,一般来说,随着熔点、弹性模量和拉伸强度的增加,降解率也会增加。 PLA复合材料由于其良好的降解控制,可能成为药物输送的理想聚合物。
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学
植物水分关系,水、离子、溶质从土壤到植物的吸收和运输机制,质外体和共质体运输机制。气孔运动机制、氮代谢、光合作用;C3、C4 和 CAM 循环、光呼吸、呼吸:糖酵解、TCA 循环和电子传递链。植物对非生物胁迫的反应和机制,包括干旱、盐度、冻害和高温胁迫、金属毒性;脱落酸在非生物胁迫中的作用。生物分子(蛋白质、碳水化合物、脂质、核酸)的结构和功能,酶动力学。主要植物次生代谢产物(生物碱、萜烯、苯丙烷类、黄酮类)的结构和生物合成。生长素、细胞分裂素、赤霉酸、油菜素类固醇、乙烯、独脚金内酯、脱落酸、水杨酸和茉莉酸的生物合成、作用机制和生理效应。衰老和程序性细胞死亡。第 5 节:遗传学和基因组学