• AST 与 ANG 合作,正在开发实时飞机危险区域 (AHA) 生成器,以便在正常和非正常运行期间快速识别受影响的空域 • 2014 年,ANG 开发了危险风险评估管理 (HRAM) 原型,以证明 AHA 计算和显示所需的时间可以从几分钟缩短到几秒钟 • AST 和 ANG 已将 HRAM 原型与大西洋城技术中心商业空间实验室中的 SDI 原型集成在一起,在 SpaceX 和 Blue Origin 实时运行期间展示其在影子模式下的能力
recerry中水星航天器的目标是基于宇航员飞行的真正航天器创建游戏体验。MA-7(Carpenter)和MA-8(schirra)使用的汞熟悉手册SEDR 104(5/20/1962)建模,并包含来自所有不同汞胶囊配置的大多数简单和高级控制,包括卫星时钟,包括卫星的时钟,使用3个主燃料的电池,两个分离和一个分离的单位,一个分离和一个分离。这种选择的原因是,这种航天器的这种配置具有为汞项目开发的所有系统,并且可以驾驶所有实际情况。
不受控制的火箭再入造成的不必要风险 Michael Byers 加拿大不列颠哥伦比亚大学政治学系,温哥华,不列颠哥伦比亚省 Ewan Wright 1 加拿大不列颠哥伦比亚大学跨学科研究研究生课程,温哥华,不列颠哥伦比亚省 Aaron Boley 加拿大不列颠哥伦比亚大学物理与天文学系,温哥华,不列颠哥伦比亚省 Cameron Byers 加拿大维多利亚大学工程学士课程 1. 摘要 2020 年,超过 60% 的低地球轨道发射导致一个或多个火箭体被遗弃在轨道上,并最终以不受控制的方式返回地球。在这种情况下,它们 20% 到 40% 的质量会在重返大气层的热量中幸存下来。许多幸存的碎片非常重,足以对陆地、海上和飞机上的人们构成严重风险。对于重返太空物体的可接受风险水平,国际上尚无共识。这有时是一个争论点,例如 2021 年 5 月,重达 20 吨的长征 5B 火箭核心级失控再入。包括美国、法国和欧空局在内的一些监管机构已经对重返大气层的太空物体设定了 1/10,000 的可接受伤亡风险(即对人类生命的统计威胁)阈值。我们认为,这一阈值忽略了火箭发射次数迅速增加的累积效应。它也无法解决低风险、高后果的结果,例如火箭级撞上人口稠密的城市或大型客机。在后一种情况下,即使是一小块碎片也可能造成数百人伤亡。除此之外,当遵守成本被认为过高时,这一门槛经常被忽视或放弃。我们分析了 1992 年至 2021 年重返大气层的火箭体,并模拟了相关的累积伤亡预期。然后,我们将这一趋势推断到不久的将来(2022 - 2032 年),模拟不受控制的火箭体再入对全球人口的潜在风险。我们还分析了目前在轨并预计很快将脱离轨道的火箭体数量,发现风险分布明显偏向赤道附近的纬度。这意味着主要航天国家给全球南方国家带来了不成比例的伤亡风险负担。现代火箭拥有可重新点燃的发动机,允许受控再入偏远的海洋区域。这与更新的任务设计相结合,将消除大多数不受控制的再入的需要。一些额外的成本将落在发射提供商身上,包括再入机动的额外燃料。政府任务应该能够吸收这些额外成本,但它们可能会影响商业发射提供商的竞争力。全球南方国家,不受控制的火箭弹体给这些国家的人民带来了不成比例的风险,因此,应该要求主要航天国家通过强制控制火箭再入来创造公平的竞争环境。这一解决方案必须由多边协调,必须对不遵守规定的行为产生有意义的后果,同时为那些无法立即参与或负担得起控制再入的人留有余地。1 通讯作者:etwright@student.ubc.ca
e. 海岸警卫队已调整了与风险评估和缓解以及事件响应相关的现有政策,以更好地评估和解决发生在海洋环境内或附近的太空运输活动的影响。对 MTS 的干扰、对公共安全的风险以及灾难响应行动的可能性都属于海岸警卫队单位已经熟悉的行动范围。然而,一些独特的挑战包括 LAA 的 12 海里限制、无人操作请求以及对商业太空飞行参与者的搜索和救援 (SAR) 支持。本指令将太空发射和再入活动置于 MTS 的背景下,并使单位能够确定基于风险的决策和任务执行所需的相关因素。
本报告评估了位于低地球轨道的非地球静止卫星随机和受控(有针对性)再入大气层时产生的碎片对地面人员和飞机上人员的风险,以及将这些卫星送入轨道的运载火箭。联邦航空管理局将其审查范围限制在低地球轨道卫星星座的再入大气层,因为目前对发射到中地球轨道 (MEO) 及以上轨道的卫星的处置做法不包括再入大气层。此外,虽然所有非地球静止卫星的发射和处置都存在碎片风险(来自卫星和任何运载火箭部件),但出于本报告中讨论的原因,大型卫星星座的发射和处置,而不是单个卫星,对地面人员和飞机上人员构成最大风险。由于大型星座是“非地球静止卫星数量呈指数增长”的原因,本报告重点关注与低地球轨道大型卫星星座碎片再入相关的碎片风险。报告的估算基于这样的假设:截至2021年3月向美国联邦通信委员会(FCC)提交的申请中提出的12个大型卫星星座将于2035年全面建成并在轨道上运行,并将根据卫星的设计寿命脱离轨道进行处置。
摘要 可重复使用运载火箭 (RLV) 不仅是经济和生态可持续的太空进入的关键,也是满足对小型卫星和巨型星座日益增长的需求的一项至关重要的创新。为了确保欧洲独立的太空进入能力,ASCenSIon(推进太空进入能力 - 可重复使用性和多卫星注入)作为一个创新培训网络诞生,拥有 15 名早期研究人员、10 名受益者和 14 个遍布欧洲的合作组织。本文概述了该任务,从可重复使用级的上升到再入,包括多轨道注入和安全处置。特别关注 ASCenSIon 内部开展的有关任务分析 (MA)、制导导航和控制 (GNC) 和气动热力学 (ATD) 的活动。介绍了项目的预见方法、途径和目标。这些主题由于相互关联,需要内部创新和高水平的协作。飞行前设计能力推动了 MA 和 GNC 任务化工具与 ATD 软件相结合以测试/探索再入解决方案的必要性。这种可靠而高效的工具将需要开发用于发射器再入的 GNC 算法。此外,还解决了 RLV 轨迹优化的具体挑战,例如集成的多学科飞行器设计和轨迹分析、快速可靠的机载方法。随后,本研究的结果用于制定控制策略。此外,执行新颖的多轨道多有效载荷注入。随后,开发了一种 GNC 架构,该架构能够在精度和软着陆约束下以最佳方式将飞行器引导至目标着陆点。此外,ATD 在多个阶段影响任务概况,需要在每个设计步骤中加以考虑。由于初步设计阶段的复杂性和计算资源有限,需要使用响应时间短的替代模型来基于压力拓扑预测沿所考虑轨迹的壁面热通量。完整的概况包括发射装置为确保遵守空间碎片减缓指南而采用的任务后处置策略,以及这些策略的初步可靠性方面。本文对 ASCenSIon 工作框架内讨论的主题及其相互联系进行了初步分析,为开发 RLV 的新型尖端技术铺平了道路。关键词:可重复使用运载火箭、制导、导航和控制、可靠性、气动热力学、
随着地球周围空间活动的增加和地面人口的增长,大型空间物体不受控制的再入越来越令人担忧。在对问题的各个方面进行最新回顾后,本文介绍了进步-M 27M 的典型案例,该火箭于 2015 年 4 月 28 日发射后立即失去控制,并于 5 月 8 日再入。与之前类似的情况一样,位于比萨的 ISTI/CNR 空间飞行动力学实验室负责为意大利民防部门和航天局提供再入预测。第一次预测是在 4 月 30 日上午发布的,5 月 7 日上午,在意大利中部上空发现了唯一可能存在风险的再入轨迹,5 月 7 日下午,即实际再入前约 12 小时,最终排除了欧洲和意大利的任何残留风险。
摘要 商业航天领域的快速发展,包括发射和卫星数量的增加,需要采取全面的监管方法来确保安全。尽管目前数量不多,但由商业部门运营的新型太空核系统是这些新活动之一。2023 年 10 月,美国运输部联邦航空管理局 (FAA) 发布了一份咨询通告 (AC),“太空核系统的发射和再入”。 AC 提供全面指导,以协助申请人在存在太空核系统的情况下完成发射和再入许可程序。AC 也适用于寻求独立有效载荷确定的申请人。在美国,商业发射、再入和太空港运营受 FAA 商业航天运输办公室监管。自 1989 年以来,FAA 已获得 700 多次商业发射和 40 多次商业再入许可,在监管美国商业太空活动方面发挥了关键作用。FAA 拥有对任何放射性核素的发射或再入的监管权,强调保障公共安全、财产安全以及与国家和国际利益保持一致。由于可能对公共安全造成高风险,因此政府必须对太空核系统的发射或再入进行全面审查。本文介绍了 FAA 为加强美国商业太空运输与太空核系统相关的公共安全所做的初步努力,并进一步推进这一努力,以考虑未来的国际合作挑战和机遇。
MOONLIGHTER 任务选择在大气层内再入。MOONLIGHTER 航天器大部分时间将处于翻滚状态,平均横截面积约为 1,010 cm2。DAS 3.2.3 分析预测轨道寿命为 1.5 年,在航天器轨道寿命期间与直径大于 10 cm 的空间物体相撞的概率小于 0.000001,远低于所需的 0.001 阈值,人员伤亡风险为零,预计没有硬件可以在再入后幸存。有关更多详细信息,请参阅“Moonlighter DAS323 输出”附件。ODAR 第 10 页上的所有缓解措施在任务完成后仍然有效,因为卫星没有任务后配置——它一直处于活动状态并翻滚状态,直到再入。