在第 74 届 ECTC 上,来自许多国家的作者将在 36 个口头会议和 5 个互动演示会议上发表约 375 篇技术论文。关键主题包括封装技术的进步、异构集成、系统设计(会议 1、7)和下一代基板制造(会议 13)。可靠性方面将涵盖先进基板、高密度封装和恶劣环境可靠性(会议 4、16、29、35)。组装和制造技术的主题包括 3D 集成、键合和芯片键合/板级可靠性(会议 10、23、27)。有关 RF、高速组件和系统的主题包括封装内天线设计、信号完整性和小芯片互连验证(会议 18、22、26)。新兴技术主题包括数字医疗、人工智能、量子计算和印刷电子的增材制造(会议 5、11、17)。互连技术会议涵盖芯片到晶圆混合键合、超细间距技术和铜混合键合等主题(第 2、8、14、32 场会议)。材料和加工主题包括芯片堆叠的先进工艺、混合键合材料、聚合物封装创新和细间距材料/工艺(第 9、15、21、33 场会议)。热/机械仿真和特性分析主题包括可靠性仿真、建模中的 AI、柔性和再分布层技术的进步、工艺/混合键合建模和热管理解决方案(第 6、12、24、30、36 场会议)。光子学主题包括共封装光学器件、光学互连和光子集成、材料和工艺(第 3、28、34 场会议)。互动演示(第 37-41 场会议)包括键合、电力输送系统、优化算法、特定半导体器件封装和可靠性评估方面的创新。第 74 届 ECTC 为探索尖端微电子封装进步、促进创新和应对关键挑战提供了一个平台。
机械和航空航天工程罗格斯大学 - 新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国摘要提出了一种新颖的有限元模型,以研究嵌入细胞外基质中轴突的机械响应,当时纯粹在纯粹的非伴随kinematic Kinematic Bounders条件下伸长额。Ogden超弹性材料模型描述了轴突和细胞外矩阵材料的特征。对白质中的两个轴突绑定方案进行了研究,其中一个少突胶质细胞(单ol)具有多个连接的多oligodendrocyte(Multi-Ol)。在多ol绑定构型中,将产生的力随机定向为分布式神经胶质细胞在其附近的轴突周围任意包裹。在单摩尔设置中,位于中央的少突胶质细胞在附近的多个轴突。绑定力针对这种少突胶质细胞,从而导致更大的方向性和较远的应力分布。与轴突的少突胶质连接由弹簧式仪表板模型表示。髓磷脂的材料特性是少突胶质细胞刚度参数化的上限(“ K”)。提出的FE模型可以实现连接机制及其对轴突刚度的影响,以准确确定由此导致的应力状态。对不同连接场景的应力应变图的根平方偏差分析显示,轴突刚度随着束缚的增加而增加,表明少突胶质细胞在应力再分布中的作用。在单醇子模型中,对于每个轴突相同数量的连接,RMSD值随着“ K”(少突胶质细胞弹簧刚度)值的增加而增加。RMSD计算表明,对于“ K”值,与多OL相比,单摩尔模型产生的略微更硬模型。当前的研究还通过随机化和添加连接以确保更大的响应能力来解决多OL模型的潜在几何局限性。两个子模型中注意到的环状弯曲应力表明,轴突损伤积累和重复负载故障的风险。关键字:微力学,有限元素,少突胶质细胞,轴突损伤,CNS白色物质,多尺度模拟,超弹性材料,Abaqus incenclature
高铬制革污泥是环境中铬污染的重要来源。作为最广泛使用的鞣制材料,碱式硫酸铬用于将易腐烂的胶原结构转化为不易腐烂的皮革基质(Famielec,2020)。然而,只有50%-60%的铬盐真正用于鞣制过程,其余的随后排入下水道,这不可避免地导致污水处理厂(WWTP)中的铬含量过高(Yang等,2020)。在排入生物处理系统之前,废水先用石灰和硫酸亚铁进行预处理,以去除溶解的铬和其他废化学品。大量沉淀的铬与其他有机沉积物一起作为初级化学污泥排出(Pantazopoulou和Zouboulis,2019)。此类污泥不仅富含不可生物降解的有机物,还富含不同存在形态的铬,增加了其有效处理的难度。随着环境的变化,制革污泥中的铬可能由三价铬转变为六价铬(Alibardi和Cossu,2016),六价铬的毒性是三价铬的10~100倍,且迁移性强、生物活性更高,具有致癌性和生物累积性(Singh等,2021)。高铬制革污泥因具有潜在的毒性,已被许多国家列为危险废物,其处置和资源回收受到严格限制。含铬制革污泥若处置不当会造成二次污染,给制革行业和环境带来巨大挑战(Malaiškien ˙e等,2019)。目前,含铬制革污泥的常见处理方法是焚烧(Kavouras等,2015),产生的灰渣则进行卫生填埋(Alibardi和Cossu,2016)。然而,焚烧过程存在一些固有的缺陷,主要问题包括产生灰烬中重金属的挥发、再分布和浸出潜力引起的慢性和急性毒性(Yu等,2021)。同时,作为一种新兴的污泥处理技术,热解由于其具有同时进行营养物回收( Hossain et al.,2020)、目标能量回收、重金属(HMs)的固定化与环境保护(谢等,2021)。污泥热解可生成高价值的燃料材料和低价的污染物去除生物炭(李等,2019;曾等,2021),可稳定有毒物质,降低其对环境的威胁(王等,2021)。而生物炭中的重金属因其对人类健康和全球环境的潜在不利影响而受到越来越多的关注。研究表明,由于重金属比有机物具有更高的热稳定性,在污泥热解过程中,大多数有毒重金属仍然富集在污泥生物炭中(王等,2022)。重金属的固定和稳定取决于污泥的性质和热解条件。