心肌梗塞(MI)或心脏病发作与中风相结合,在2019年在全球范围内死亡超过1500万。它由一个冠状动脉中的血流中断。在大多数情况下,这是动脉粥样硬化的结果,更具体地说是动脉粥样硬化斑块阻塞动脉的破裂。破裂的第一个结果是缺血,缺乏血液供应导致缺氧,影响了正常由动脉提供的心脏组织区域。然后将该区域定义为梗塞区域,并与坏死有关。由于缺血性发作而导致的心肌细胞的丧失之后是重塑时期。这与包括胶原蛋白在内的过度细胞外基质(ECM)沉积有关,形成疤痕代替健康组织,这是一种修复受损心脏的补偿机制。总体而言,它会导致心室壁和扩张的变薄,并伴有壁应力中断和心脏功能受损(2)。由神经内分泌激素触发的信号通路(因损伤而产生)或机械力中断会导致心肌细胞肥大(3,4)。目前无法克服这种病理重塑和潜在的机制,最终将导致心力衰竭,与死亡的高风险有关(5)。某些生物会避免受伤后这种不良反应,因为它们能够完全再生自己的心脏。
Janendra(Jay)是一位特许专业的电气工程师,拥有25年的经验,可以提供用于电气基础架构的创新,技术上的,具有成本效益和安全的工程解决方案。他曾在电力系统设计和运营,资产战略和澳大利亚和太平洋群岛的项目开发中担任高级工程,管理和能力建设角色。
- 通过包含黑色环保恶意软件的网络钓鱼电子邮件引入的攻击 - 启用了与黑客系统的攻击者通信 - 使攻击者能够窃取关键数据和研究系统环境•诚信攻击(欺骗):
机械部,Skncoe,SPPU,Pune摘要 - 由于环境利益和燃油效率,对电动汽车(EV)的需求正在增加。但是,对潜在电动汽车购买者的收费仍然是一个主要关注的问题。由于环境利益和燃油效率,近年来电动汽车(EV)的使用已大大增加。但是,缺乏方便有效的充电基础设施仍然是潜在的电动汽车购买者的主要关注点。这项研究提出了一个用于电动汽车的无线充电站,该电动机将太阳系用于基于电容的电感电感电磁原理。该系统由太阳能电池板,储能系统,电源转换器和无线充电垫组成。太阳能电池板捕获太阳能,将其转换为电能,并将其存储在储能系统中。电源转换器调节电压和电流通过无线充电板为电动汽车电池充电。所提出的系统消除了对物理连接的需求,减少碳排放并促进可持续运输。系统的设计和实施需要仔细考虑各种参数,包括太阳能电池板容量,储能系统尺寸,充电板效率和电源转换器拓扑。此外,必须评估系统的成本和可行性,以确保其实用性和商业可行性。关键字 - 充电基础设施,太阳能电池板,充电垫,环保,电源转换器,储能系统。
2019年的出现,SARS-COV-2的出现对人类的生活造成了巨大的损失,并对社会产生了巨大影响。有必要确定具有不同作用机制的有效抗病毒药,以便加速临床前发展。这项研究集中在直接作用小分子抗病人的五种最成熟的药物靶蛋白上:NSP5主蛋白酶,NSP12 RNA依赖性RNA聚合酶,NSP13解旋酶,NSP16 2'-O甲基转移酶和尖型蛋白的S2亚基。使用溶剂映射和自由能计算的工作流程来识别和表征芳族药理(苯)的有利的小分子结合位点。识别最有利的位点后,使用计算片段筛选进行了比较计算出的配体效率。最有利的位点总体位于NSP12和NSP16上,而NSP13和S2 Spike的最有利位点相对于NSP12和NSP16,配体效率相对较低。利用在NSP13解旋酶上的许多可能位点上进行片段筛选,我们在N末端锌结合结构域(ZBD)上鉴定了一个有利的变构位点,这可能适合虚拟或生物物理片段筛查工作。NSP12:NSP13复制 - 转录复合物的最新结构研究在该位点实验证实了配体的结合,该结合在该位点揭示为功能性NSP8:NSP13蛋白质 - 蛋白质相互作用。我们希望,这些药物靶标的200多个可能的小分子结合位点的图可能用于持续的发现,设计和药物重新利用。NSP13 ZBD构象的详细结构分析显示了诱导拟合柔韧性在该配体结合位点的作用,并确定哪些构象状态与有效的配体结合有关。此信息可用于优先考虑筛查工作或有助于破译筛查击中如何与特定目标蛋白结合的过程。
生物活性玻璃 有助于软组织和骨组织再生的生物材料,由于疗效证据不足,不适用于以下用途: • 与根尖周围手术结合使用 • 用于治疗牙龈黏膜畸形 所有其他生物材料,包括但不限于骨形态发生蛋白、羊膜和干细胞,由于疗效证据不足,不适用于再生。 自体血浓缩产品的收集和应用 由于疗效证据不足,不适用于自体血浓缩产品的收集和应用。 定义 自体血浓缩物:使用患者自身血液制成的血液产品,包括富血小板纤维蛋白 (PRF) 和富血小板血浆。 (PRP) 生物活性玻璃:一组生物相容性的生物陶瓷材料,在钙和磷酸盐含量方面与骨羟基磷灰石相似。它们在暴露于体液时会溶解,并通过在其表面形成磷灰石晶体,获得与骨骼和牙齿组织中存在的磷灰石晶体发生化学结合的能力。(Jafari 2022)生物材料/生物反应调节剂:改变伤口愈合或宿主-肿瘤相互作用的药剂。此类材料可以包括细胞因子、生长因子或疫苗,但不包括任何实际的硬组织或软组织移植材料。这些药剂被添加到移植材料中或单独使用,以加速硬组织和软组织外科手术中的愈合或再生。(ADA)
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
关于研讨会的肠上皮是一种坚固的自我更新组织,由有效的茎和祖细胞支持。在流行模型中,隐窝碱中的LGR5+细胞是唯一维持稳态再生的肠道干细胞(ISC)。我们已经确定了以FGFBP1表达为特征的新型上层crypt ISC,它不同于基部的LGR5+细胞,它们是多功能的,并且支持长期的组织自我更新。在这里,我们提出了一个修订后的组织再生模型,该模型将LGR5+干细胞模型与FGFBP1+ ISC的命运图研究对帐。我们还将讨论我们关于干细胞异质性的未发表研究。
林雪平大学 医学与健康科学学院 生物医学与临床科学系 眼科学系 瑞典林雪平 考试于 2022 年 12 月 9 日星期五 13:00 在 Belladona hörsalen 举行 主要指导老师:Neil Lagali,实验眼科学教授 生物医学与临床科学系 眼科学系 瑞典林雪平大学
脱发或脱发是现代社会中普遍的状况,对个人造成了重大的心理和心理负担。脱发的类型,包括雄激素性脱发,脱发和催化性脱发;其中,雄激素脱发是最常见的疾病。传统治疗方式主要涉及医疗选择,例如米诺地尔,非那雄胺和手术干预,例如毛发移植。但是,这些治疗方法仍然有许多局限性。因此,探索脱发的发病机理,专门针对毛囊的发展和再生(HFS),并制定促进头发再生的新策略至关重要。一些新兴脱发的疗法已获得突出。这些疗法包括低级激光疗法,微针刺,分数射频,富含血小板的血浆和干细胞疗法。上述治疗策略对于脱发管理似乎很有希望。在这篇综述中,我们研究了HF开发和再生的基础机制。为此,我们研究了HFS的结构,开发,周期和细胞功能。此外,我们分析了脱发的症状,类型和原因及其当前的常规治疗方法。我们的研究概述了最有效的基于再生医学的脱发疗法。
