目的:溃疡可以削弱口腔粘膜的先天防御能力。该研究的目的是检查使用源自骨髓干细胞的分泌组的治疗优势来治愈白化病大鼠的创伤性溃疡。材料和方法:将三十个雄性白化病大鼠随机分配给三组:对照组,接受Oracure Gel治疗的组以及接受秘密治疗的组。在第三天,第七天和第十二天服用颊粘膜的组织。评估是通过临床评估,组织学检查,Masson的三色染色和血管内皮生长因子(VEGF)特定的免疫组织化学分析进行的。统计分析。结果:用分泌组治疗的小组的伤口收缩比例最大,愈合率最快。对分泌组治疗组的组织学检查表现出改善的重新上皮化和更好的愈合能力。此外,该组显示出胶原蛋白含量的增加,新血管的形成以及促进其成熟的能力。结论:秘密的疗法可能是鼓励粘膜修复的安全有效方法。它可能是一种新型的无细胞治疗策略。因此,它提供了再生医学作为常规细胞疗法的可能替代品。关键词:口腔溃疡,再生,骨髓干细胞,分泌组,白化大鼠。
虽然成年斑马鱼和新生小鼠具有强大的心脏再生能力,但成年哺乳动物通常会丧失这种能力。动物界心脏再生能力多样性背后的逻辑尚不清楚。我们最近报告说,动物代谢与心脏中单核二倍体心肌细胞的丰度呈负相关,这些心肌细胞保留了增殖和再生潜力。甲状腺激素是动物代谢、线粒体功能和产热的经典调节剂,越来越多的科学证据表明,这些激素调节剂也对心肌细胞增殖和成熟有直接影响。我们认为甲状腺激素通过不同的机制双重控制动物代谢和心脏再生潜力,这可能代表了获得吸热能力和失去心脏再生能力的进化权衡。在这篇综述中,我们描述了甲状腺激素对动物代谢和心肌细胞再生的影响,并强调了最近的报告,将哺乳动物心脏再生能力的丧失与出生后发生的代谢变化联系起来。
与年龄相关的骨骼肌再生能力下降是多因素的,但免疫功能障碍对再生衰竭的影响尚不清楚。巨噬细胞对于肌肉再生过程中有效的碎片清除和 MuSC 活动至关重要,但控制肌肉修复过程中巨噬细胞功能的调节机制在很大程度上尚未探索。在这里,我们发现了一种在骨骼肌再生过程中起作用的免疫调节新机制,该机制在老年动物中被破坏,并且依赖于巨噬细胞功能的调节。免疫调节剂 MANF 在年轻小鼠的肌肉损伤后被诱导,但在老年动物中则不会,其表达对于再生成功至关重要。老年肌肉中的再生障碍与修复相关的髓系反应缺陷有关,类似于 MANF 缺乏模型中发现的缺陷,可以通过 MANF 输送得到改善。我们提出恢复 MANF 水平是改善老年肌肉髓系反应和再生能力的可行策略。
摘要背景:妊娠糖尿病(GDM)是怀孕期间最常见的代谢疾病,并增加了母亲和后代的2型糖尿病患病率。GDM管理提供了一个机会之窗,以预防和降低整个生活的全球糖尿病负担。GDM背后的分子机制的定义很差。在这项研究中,我们探讨了转化生长因子β(TGF -β)信号在GDM中的潜在参与,因为据报道该途径会影响胰腺细胞的发展,增殖和身份。方法:我们开发了GDM动物模型。血清循环水平的TGF家族配体在小鼠和人GDM中测量。在基因和蛋白质表达水平上研究了胰腺TGF的胰腺TGF。结果:我们的GDM动物模型概括了人类GDM的主要病理生理特征,包括葡萄糖不耐症,胰岛素敏感性降低和胰腺细胞故障。GDM小鼠的胰岛显示出胰岛素的分泌和含量受损,离子通道活性改变以及细胞复制率降低。 这伴随着SMAD2信号激活的增加。 在小鼠和人GDM中发现血清活化素A和抑制素水平升高,表明它们是胰腺Smad2激活的上游信号传导剂的作用。 小鼠胰岛中TGF /激活素-SMAD2信号的药理抑制作用导致胰腺功能和再生能力提高了 - 细胞的再生能力。 该信号通路的衰减可能代表GDM的假定治疗靶标。胰岛显示出胰岛素的分泌和含量受损,离子通道活性改变以及细胞复制率降低。这伴随着SMAD2信号激活的增加。血清活化素A和抑制素水平升高,表明它们是胰腺Smad2激活的上游信号传导剂的作用。小鼠胰岛中TGF /激活素-SMAD2信号的药理抑制作用导致胰腺功能和再生能力提高了 - 细胞的再生能力。该信号通路的衰减可能代表GDM的假定治疗靶标。该信号通路的衰减可能代表GDM的假定治疗靶标。结论:我们的数据揭示了胰腺SMAD2途径的破坏在GDM的发病机理中起关键作用,导致异常的葡萄糖稳态和胰岛素分泌不足。关键词妊娠糖尿病,妊娠,胰腺 -细胞,TGF激活素信号,SMAD2
高压氧疗法 (HBOT) 在临床应用中利用 100% 的高气压氧气。HBOT 已被证明是多种临床和病理疾病的有效辅助治疗方法。HBOT 的治疗结果基于增加组织氧合或提高氧生物利用度的生理效应。HBOT 目前在伤口愈合、热或辐射烧伤以及组织坏死等疾病中的指征表明其在促进再生过程中发挥作用。各种研究表明,HBOT 在血管化、血管生成和胶原蛋白生成增强中发挥作用。个体的再生能力受环境和遗传因素的影响。此外,不同类型组织的再生能力各不相同,并且这种能力会随着年龄的增长而下降。HBOT 通过改变基因表达、延缓细胞衰老和协助增加端粒长度来在基因水平上影响生理过程。从组织再生到改善认知功能等各种适应症的积极结果表明它在再生和抗衰老治疗方面具有巨大的潜力。
肺动脉。第2阶段是部分Cavo-Pulonary旁路,其中上腔静脉(SVC)在4-6个月大时与肺动脉相连。在第3阶段,下腔静脉(IVC)与18个月至4岁的肺动脉相连,从而产生Fontan循环(3,4)。尽管这些程序的出现根本使生存成为可能,但这些患者的长期预后仍然很差。一项针对1998年至2012年之间的244例HLHS患者的一项研究估计,有63.5%的患者存活到1岁,58.6%至5年,54.6%至10岁,而32.6%至15岁(3)。在某些情况下,患者无法忍受抑制过程的一个阶段,并将其恢复回到先前的阶段并列为心脏移植(5)。已经观察到,需要心脏移植的HLHS患者的结果很差,其中一项研究观察到这些患者中有53%在10年的时间点幸存下来(5)。获得完整的方坦循环的患者通常会出现并发症,包括蛋白质失去肠病,心律不齐和肺动脉高压(6)。因此,需要改善HLHS手术抑制程序所赋予的益处。已经假设,使用基于干细胞的再生技术可以帮助加强和重塑欠发达的心脏。这种方法的原理是引入的多能细胞可以通过旁分泌信号传导诱导受损/发育不良组织的自我再生能力,而不是整合在组织本身中(7,8)。应该注意的是,成人心脏组织的再生能力存在一些争议,以便最初的研究表明,骨髓衍生的多能细胞可以整合到心脏组织中,并提出了驱动驱动的问题(9)。尽管如此,仍有临床前和临床数据表明,小儿心脏组织通过未知机制保持了一些再生能力,因此在这些情况下可能是基于干细胞的方法可以探讨的(10)。在这里,我们将回顾各种临床试验,这些试验测试了可以诱导Pe Diatric心脏组织再生的假设,这些试验的局限性,以及对临床前环境中正在开发的新方法的简要概述。
核干细胞素 ( NS ) 是一种优先在干细胞和癌细胞中表达的脊椎动物基因,它的作用是调节细胞周期进程、基因组稳定性和核糖体生物合成。NS 及其旁系同源基因 GNL3-like ( GNL3L ) 是在脊椎动物进化枝中从其直系同源基因 G 蛋白核仁 3 ( GNL3 ) 发生复制事件后出现的。然而,对无脊椎动物 GNL3 的研究有限。为了更好地了解 GNL3 基因的进化和功能,我们对水螅纲刺胞动物 Hydractinia symbiolongicarpus 进行了研究,这是一种群体水螅,在其整个生命周期中不断产生多能干细胞,并表现出令人印象深刻的再生能力。我们发现 Hydractinia GNL3 在干细胞和生殖系细胞中表达。GNL3 的敲低减少了不同年龄 Hydractinia 幼虫中有丝分裂和 S 期细胞的数量。通过 CRISPR/Cas9 对 Hydractinia GNL3 进行基因组编辑,导致菌落生长率降低、息肉再生能力受损、性腺形态缺陷和精子活力低下。总之,我们的研究表明 GNL3 是一种进化保守的干细胞和生殖系基因,参与 Hydractinia 的细胞增殖、动物生长、再生和有性生殖,并为 GNL3 和干细胞系统的进化提供了新的启示。
器官损害和退化性疾病是由于细胞死亡或功能丧失而引起的,可能会严重影响人们的生活。这种疾病的例子包括退行性疾病,例如帕金森氏病,阿尔茨海默氏病,肝脏的肝硬化以及听力丧失,以及诸如心肌梗塞和皮肤灼伤等有害疾病。器官(例如肝脏)具有很高的再生能力,并且可以在某些情况下足够再生以保持功能稳定性(Michalopoulos和Bhushan,2021年)。小鼠肝脏已经证明了稳健的再生,该再生支持部分肝切除术后肝功能(Zhang等,2021; Duan等,2022; Fan等,2022)。不幸的是,大多数组织和器官没有这种再生能力,并且在受伤后无法修复自己,最终导致功能丧失。一个例子是耳蜗中的毛细胞,一旦损坏就不会再生,从而导致不可逆的听力损失(Warchol等,1993)。这些患者将需要人工耳蜗植入物,其中包含一系列电极和接收器的电子设备被手术植入患者的内耳中,以直接刺激听觉神经并恢复某些患者的听力(Lenarz,2017; Carlson; Carlson,2020; 2020; Weltin等,202222; 2022)。类似地,心脏瓣膜受损的患者将需要用金属或生物材料制成的人造瓣膜替换以维持心脏功能(Singh等,2019; Hofferberth等,2020; Dreyfus等,2022;图1)。
摘要:成人神经发生是所有脊椎动物中发生的进化保守过程。然而,考虑到构成和损伤引起的条件下的神经源性壁ni,神经干细胞(NSC)身份,神经干细胞(NSC)身份以及大脑可塑性之间观察到明显的差异。斑马鱼已成为研究成人神经发生涉及的分子和细胞机制的流行模型。与哺乳动物相比,成年斑马鱼显示出大脑分布在整个大脑中的大量神经源性壁ni。此外,它表现出强大的再生能力,没有疤痕形成或任何明显的残疾。在这篇综述中,我们将首先讨论有关(i)成年斑马鱼和哺乳动物(主要是小鼠)和(ii)主脑脑脑壁iches中神经干细胞的性质的神经源性壁ches的分布。在第二部分中,我们将描述斑马鱼和小鼠端脑损伤后发生的一系列细胞事件。我们的研究清楚地表明,大多数早期事件发生在斑马鱼和小鼠之间,包括细胞死亡,小胶质细胞和少突胶质细胞募集,以及损伤引起的神经发生。在哺乳动物中,受伤后的后果之一是形成了持续存在的神经胶质疤痕。在斑马鱼中不是这种情况,这可能是斑马鱼表现出更高再生能力的主要原因之一。