在哺乳动物中,胰腺是一种重要的器官,既可以执行消化(外分泌)和血糖调节(内分泌)功能,而在人类中,它也参与了严重的疾病,例如糖尿病。胰腺被认为是脊椎动物的通用器官,但它们的结构和功能因鱼而异。在脊椎动物的进化中,胰腺演变为包括内分泌细胞和外分泌细胞,这在从鱼到两栖动物的过渡中看到了这一变化。这一进化步骤强调了两栖动物在研究胰腺发育中的重要性。在这项研究中,我们使用伊比利亚蜘蛛(Pleurodeles waltl)研究了胰腺的基本结构,发育过程和再生能力,这是一种主要用于尾尾两栖动物的模型动物。 NEWT胰腺由单个哺乳动物样器官组成,包括外分泌和内分泌组织,并且没有在鱼中发现的肝癌。另一方面,已经揭示了胰腺样组织,被认为是尾胆道独有的,与鱼类胰腺类似。在发育过程中,在原始肠道的发育阶段,在两个裤子芽中的每一个中都开发了两个不同类型的胰腺细胞,并且具有复杂功能的胰腺是独立于肠道形成的,当胰腺由胰腺芽融合在一起时,它们与胰腺类似于胰腺中的胰腺类似的过程,如胰腺中的麦芽麦芽剂中的胰腺。接下来,我们通过破坏CRISPR-CAS 9来调查PDX1基因的效果,PDX1基因是脊椎动物胰腺发展的主要因素,发现在NEWT中开发了未开发的胰腺,随后可以生存。此外,对PDX基因的同步分析表明,除了Newts中的PDX1外,PDX2基因仅在某些鱼类中存在于某些鱼类中,也存在于基因组中。最后,除去了NEW的胰腺,并通过观察细胞增殖模式和测量血糖水平来检查胰腺的再生能力。胰腺去除会诱导临时细胞增殖,但并未导致完整的形态学和结构再生。在这项研究中获得的结果提供了对脊椎动物胰腺的进化轨迹的见解,从消化功能所涉及的原始作用中,以发展为能量代谢的复杂调节,尤其是负责血糖调节的独立器官。我的研究表明,纽特胰腺在填补有关脊椎动物胰腺功能进化的重要知识中的空白方面起着重要作用。
多年来,人们一直在讨论转向循环经济的必要性,即生态资源消耗等于或少于地球可再生资源的必要性,但并未得到充分部署。2021 年,资源消耗将超过地球的再生能力 75%,到 2050 年,废弃物将比 2016 年高出 70%。然而,根据世界经济论坛的一项研究,我们看到了三种可以推动循环经济解决方案部署的催化剂,这些催化剂每年可能节省 1 万亿美元的材料成本。首先,大宗商品价格飙升可能会增加个人和企业对能源/废弃物/食品效率解决方案的部署。其次,资源消耗/废弃物与温室气体排放之间的内在联系将使循环经济解决方案成为向低碳经济转型的关键。第三,欧盟分类标准扩展至包括循环经济类别,可能会增加企业和投资者对解决方案的关注,并提高表现强劲企业的估值。在本报告中,我们详细介绍了七个循环经济主题。
网址:https://scssap.org 挑战 南海是一个半封闭海域,拥有许多独特的栖息地和生态系统,是全球生物多样性最丰富的浅水海洋生态系统之一。然而,南海及其相关环境的丰富性和生产力受到高人口增长、污染、过度开采和栖息地改变的严重威胁,导致栖息地大量丧失,生物资源再生能力受损。环境恶化对该地区的经济产生了重大的社会经济影响。认识到迫切需要采取行动来制止该海洋流域环境的恶化,该地区的国家寻求联合国环境规划署和全球环境基金 (GEF) 的帮助,准备一份关于这些问题及其社会根源的跨境诊断分析,作为制定战略行动计划 (SAP) 的基础,该计划于 2008 年在政府间通过。SAP 针对沿海栖息地、陆地污染管理和南海鱼类资源的过度开发设立了一系列目标和优先行动。解决方案南海和泰国湾战略行动计划 (SCS SAP 项目) 的目标是:
几乎所有现存的动物谱系中的物种都能够再生身体部位。但是,尚不清楚控制再生的基因表达程序是否在进化上保守。脆性恒星是一类具有出色再生能力的棘皮动物类,但是有限的基因组资源阻碍了对该组再生遗传基础的研究。在这里,我们报告了脆性恒星Amphiura Filiformis的染色体规模的基因组组件。我们表明,脆性星基因组是到目前为止测序的棘皮动物中最重新排列的,其重新组织的HOX群集让人联想到海胆中观察到的重排。此外,我们在脆性恒星成人手臂再生过程中对基因表达进行了广泛的分析,并确定了控制伤口愈合,增殖和分化的基因表达的顺序波。我们与其他无脊椎动物和脊椎动物模型进行了比较转录组分析,以进行附加物再生,并发现了数百个具有保守表达动力学的基因,尤其是在再生的增殖阶段。我们的发现强调了棘皮动物检测脊椎动物和经典无脊椎动物再生模型系统之间的远程表达保护的关键重要性。
哺乳动物内耳的感觉上皮能够感知声音和运动。对这些上皮的损害会导致不可逆的感觉性听力损失和前庭功能障碍,因为它们缺乏再生能力。不造成永久性损害的情况下,人内耳不能进行活检,显着限制了可用于研究的组织样本。研究疾病病理学和治疗性发展传统上依赖于动物模型,这些模型通常无法完全概括人类的耳膜系统。现在,使用诱导的多能干细胞衍生的培养物来解决这些挑战,从而产生内耳的感觉上皮组织。在这里,我们回顾了如何使用多能干细胞来产生二维和三维耳培养物,这些新方法的优势和局限性以及如何使用它们来研究遗传和获得形式的声音和获得形式。本综述概述了迄今为止多能干细胞衍生的耳培养物的进展,重点是它们在疾病建模和治疗试验中的应用。我们调查了他们当前的局限性和未来的方向,强调了他们对高通量药物筛查和开发个性化医学方法的潜在效用。
摘要:干细胞以其独特的再生能力而闻名,在治疗中风方面具有巨大的希望,这是全球残疾的主要原因。本综述对中风(缺血和出血)恢复中的干细胞应用进行了详细的分析。IT检查基于自体(患者衍生),同种异体(供体)和基于粒细胞的固定刺激因子(G-CSF)干细胞的疗法,重点介绍了细胞类型,例如间质干细胞(MSC),骨莫罗型单核干细胞(骨骼核细胞),骨骼含量单核干细胞(BMMSCSSSC)和NEARARAN和NEARARARARAN/NEARARAN/NEARARAN/NEARARAN/NEARARAN/NEARARITITIRERITITIRERITITOR。本文编译了临床试验数据以评估其有效性和安全性,并解决了这些创新治疗的道德问题。通过解释干细胞诱导的神经系统修复的机制,该评论强调了干细胞在革命中风康复方面的潜力,并提出了未来研究的途径。关键词:干细胞疗法,中风,脑出血,自体干细胞移植,同种异体干细胞移植,粒细胞 - 粘液固体刺激因子
今天,脂肪组织衍生的间充质干细胞(AT-MSC)广泛用于治疗持续性慢性伤口(例如糖尿病伤口)和烧伤损伤,先天性异常(例如脂肪营养不良,唇裂或pa),周围血管疾病(例如Buerger病和缺血性脚),手术后可能发生的组织损伤以切除肿瘤(例如乳腺切除后的乳房薄膜),面部,手工和脸部恢复原状(脸部恢复原状(皱纹)(皱纹),以及柔软的组织。各种科学研究表明,它们有能力形成强大的新血管,以及他们分泌的众多保护因素如何在整个生命期间恢复组织的再生能力。及其在骨科,整形外科和皮肤病学中的应用,AT-MSC很容易获得,其组织特征使得可以大量获得。如今,它们构成了骨髓衍生的MSC的可行替代来源。因此,它们现在被用作替代来源,尤其是在与免疫抑制相关的临床过程中(如GVHD)。此外,在所有临床试验和研究中,涉及骨髓衍生的MSC,例如心脏血管疾病,器官衰竭和神经脱生性疾病等所有临床试验和研究中,AT-MSC的效果正在进行中。
IT6000C系列是双向可编程DC电源,采用了第三代SIC基本技术。它将源和水槽功能集成到一个单元中。基于这两个功能,IT6000C提供了两季度操作的功能。再生能力使消耗的能量可以清晰地放回电网上,从而节省了能源消耗和冷却的成本,同时不干扰网格。IT6000C系列提供最大。 输出电压最大为2250V,支持平均电流分布的主奴隶平行。 输出功率高达2MW。 内置波形生成器支持生成任意波形,并通过前面板USB端口导入波形列表文件。 IT6000C是高可靠性,高效设置,安全和多个测量功能的组合。IT6000C系列提供最大。输出电压最大为2250V,支持平均电流分布的主奴隶平行。输出功率高达2MW。内置波形生成器支持生成任意波形,并通过前面板USB端口导入波形列表文件。IT6000C是高可靠性,高效设置,安全和多个测量功能的组合。
脊髓损伤 (SCI) 是全球范围内导致残疾的主要原因,再生医学为开发此类损伤的新疗法带来了希望 ( James et al., 2019 )。SCI 可导致感觉和运动功能丧失,并可能对个人的生活质量产生重大影响,不仅影响身体能力,还影响情绪和社会健康 ( Eckert and Martin, 2017 )。尽管经过数十年的研究,但 SCI 仍然无法治愈。脊髓受损神经元无法再生是再生医学领域的主要挑战之一。在哺乳动物中,脊髓是一种复杂的结构,再生能力有限 ( He and Jin, 2016 ; Sofroniew, 2018 ),调节神经元再生的细胞和分子机制尚不完全清楚。最近的研究确定了促进神经元再生的新靶点和潜在策略,包括使用干细胞疗法(Okano,2010 年;Führmann 等人,2017 年)、基因疗法(Lentini 等人,2021 年;Zhang Y. 等人,2022 年)和组织工程(Madhusudanan 等人,2020 年;Cheng 等人,2021 年)。最近的研究强调了使用基因疗法促进各种情况下的再生和功能恢复。例如,通过免疫逃逸强力霉素诱导基因开关使用时间限制的神经胶质细胞系衍生的神经营养因子表达的基因疗法已显示出在增强大鼠近端神经损伤后的轴突再生和运动神经元存活方面的前景(Eggers 等人,2019 年)。研究表明,在 SOX2 介导的体内命运重编程后,驻留的星形胶质细胞会生成新的神经元(Su 等,2014;Wang 等,2016)。同样,另一项研究表明,NG2 神经胶质细胞中的异位 SOX2 可诱导神经发生、减少神经胶质瘢痕形成并生成脊髓本体神经元,促进功能恢复(Tai 等,2021)。此外,研究表明,脊髓损伤后进行 FGF22 基因治疗可促进突触形成并为神经元重新布线提供有针对性的支持,急性和早期应用可改善功能恢复(Aljovi´c 等,2023)。然而,结果显示存在一个较短的时间范围,至少在 SCI 后的最初 24 小时内,在此期间,使用 FGF22 进行突触形成基因治疗可以改善运动功能的恢复。这种有限的窗口在临床环境中可能难以实现,这可能需要探索具有更长治疗窗口的替代突触生成分子或方法。总体而言,这些发现表明基因疗法有可能激活内源性神经胶质细胞的再生能力,从而导致各种情况下的再生和功能恢复。
摘要:衰老是一个生物学过程,功能能力逐渐下降,此过程通常会增强慢性疾病发病率和死亡率的风险。随着年龄的增长,免疫系统经历了重塑过程,该过程可能导致慢性炎症状态,分别称为免疫衰老和炎症。免疫衰老伴随着先天免疫细胞的数量,比例和功能能力的变化。功能失调的免疫细胞的积累和低度炎症的存在会导致器官损伤并加快衰老过程。肝脏对调节人体的代谢和免疫功能至关重要,不受这些影响。与年龄相关的修饰会影响其免疫功能和再生能力,并可能增加与年龄相关的肝病的患病率。与其他器官系统相比,衰老对肝脏的影响相对严重,但它仍然会浸润先天免疫细胞并升高炎症水平。本综述将详细说明衰老如何影响肝脏先天免疫细胞,例如中性粒细胞,巨噬细胞,树突状细胞,肥大细胞和先天淋巴样细胞。它还将探索延迟免疫衰老的潜在策略,以减轻这些与年龄相关的变化。
