作者 C Maathuis · 2022 年 · 被引用 21 次 — 因此,这项研究为人工智能、军事和网络安全领域现有的知识体系做出了贡献,并呼吁在这方面进行进一步研究……
本报告介绍了用于在Ladar图像中进行预处理,分割和检测车辆大小对象的不同技术。提出了五种预处理策略; 1)中值过滤,2)级联反应中的两个1-D中值过滤器,3)辐条中值过滤器,4)甜甜圈过滤器,5)离群值检测和去除。辐条中值和甜甜圈过滤器几乎毫无价值。其他过滤器的运行良好。离群值检测器在持久边缘和小结构(以及图像噪声)的同时删除了外部。关于分割算法,我们已经实施并测试了四组基于区域的算法和一组基于边缘的算法。分割的输出是对象定义算法的输入。提出了两种策略;一种常规的聚集聚类方法和一种基于图的方法。本质上,它们都给出相同的结果。在预定义间隔内具有高度,宽度和长度的簇被认为是可能的对象。所有算法在不同场景中的各种车辆的实际数据上进行了测试。很难得出任何一般结论。但是,似乎基于区域的算法的性能优于基于边缘的算法。在基于区域的策略中,基于形态或过滤操作的策略在大多数情况下表现良好。
I 研讨会讨论了这个多方面主题的许多方面。数值目标建模具有很大的吸引力。提出了使问题在计算上更有效的方法。与全尺寸目标测量相比,模拟和缩放测量有助于建立信心,使用这些技术的经济有效组合来确定雷达截面数据。考虑了雨水去极化和表面多径传播等环境因素,以及人造箔条对雷达的影响。一个重要的研究课题是基于目标多普勒特性、偏振测量和一维或二维成像的非合作目标识别的稳健性。现代雷达系统提供大量数据,使得目标检测自动化几乎成为必需。比较了不同方法的优点。在未来复杂的电子战领域,签名修改是目标生存的先决条件。论文范围从低雷达截面结构设计和改造到主动消除技术。