使用全球定位系统(GPS)和地理信息系统(GIS)生成的土壤生育图是有效营养管理决策的关键工具。然而,发现印度比哈尔邦穆扎法尔布尔区的米纳普尔,坎蒂和马尔万街区的土壤肥力数据不足。因此,在这三个区块中进行了土壤肥库存研究,以创建主题土壤生育图。使用手持GPS设备从研究区域的各个位置收集了40个地理参考的复合土壤样品。使用标准方法分析了处理后的土壤样品的各种土壤生育参数。然后,使用具有反距离加权(IDW)插值技术的ArcGIS软件创建土壤养分状态和生育图。结果清楚地表明土壤反应是碱性,pH值超过7.5。发现土壤有机物,钾和硫的含量低至中等,而在这些区块中,可用的氮和磷水平非常低。最终得出的结论是,该研究生成了比哈尔邦Muzaffarpur区的Minapur,Kanti和Marwan Blocks的主题土壤生育图,从而揭示了具有低至中等有机物,钾,硫磺和硫磺以及非常低的氮气和氮气和磷的碱性土壤。关键字:GIS;全球定位系统; Muzaffarpur;土壤生育图。1。引言作为所有生命的源泉,土壤是最重要,最有价值的自然资源[1]。GI用于收集,存储,检索,转换和显示空间数据[14]。土地利用和土壤管理策略对土壤生育能力有影响,土壤生育能力在空间上因田地而异[2,3]。通过有效的营养管理,维持土壤的生育状况对于可持续作物生产是必要的[4,5]。生育能力管理已被证明是一种成功的方法,可以通过物理,化学和生物学过程的结合带来实质性地理变异性的农业土壤的生产力[6-9]。基于土壤测试的生育能力是具有高度空间变异性的农业土壤的有效工具[10]。土壤肥力的基本指标是土壤(质地,结构和颜色)的物理特征,pH,有机物,主要养分,二次营养和微量营养素(B,F,Fe,Fe,Zn,Cu和Mn)等[11]。了解土壤生育能力的状态对于制定支持作物种植设计的有效土壤管理计划至关重要[12,13]。遥感工具(例如全球定位系统(GPS)和地理信息系统(GIS))是评估土壤空间变异性的新兴工具。与农业有关的主题地图(土壤生育能力,土地使用,土地覆盖,土壤侵蚀等)通过GPS工具生成的极大地有助于制定特定地点的营养管理策略[15]。 在技术中,出现了自然的研究极大地有助于制定特定地点的营养管理策略[15]。在技术中,出现了自然的研究
《巴黎协定》旨在将全球温度升高到高于工业水平的2°C以下,最大为1.5°C。各方每五年提交全国确定的捐款(NDC),概述了2020年后的缓解和适应目标,目的是随着时间的流逝而增加野心。基于自然的解决方案(NBS)缓解气候变化正在在国家气候政策中越来越受欢迎,因为它们增强了天然碳汇,例如森林,草原和泥炭地,并以比技术度量低的成本提供了其他好处,例如生物多样性保护。nbs于2022年在联合国环境大会第五届会议上正式定义,以保护,保护,恢复,可持续使用和管理自然或修改的生态系统,同时应对社会,经济和环境挑战,同时为人类福祉提供益处,生态系统服务,恢复能力和生物多样性。2023年6月,德国为气候和生物多样性的基于自然的解决方案启动了联邦行动计划,“ AktionsprogrammymNatürlicherKlimaschutz(ANK)”,其中包括69种森林,泥炭地,泥炭地,沿海生态系统和农业土壤的森林,泥炭地,以减少温室气体的群体和其他造型库,并减少温室气体的组合。行动计划将NBS集成为缓解气候的NBS中,以支持实现国家气候和生物多样性减轻和适应目标的国家战略(BMUV 2023)。
摘要:磷(P)是农作物生产力至关重要的至关重要的。植物从土壤中吸收P盐,主要是殖民磷酸盐,但主要的P来源位于有机材料中。土壤磷酸酯酶(APASE)在通过水解从有机物释放P中起着至关重要的作用。酸和碱性磷酸酶对于缓解植物的P缺乏至关重要。在这篇综述着重于农业土壤的综述中,我们研究了生物物理学,农业管理和气候因素的关系,以及其与农作物生长和产量的联系。我们的发现表明,孔和土壤pH值之间存在很强的联系,受粘土含量,有机物,微生物生物量碳和氮的积极影响。采用健康的土壤实践,例如平衡的有机肥料使用,最佳的土壤水位,耕作减少,耕作和使用有益的植物微生物有助于增强APASE活动。然而,由于该领域的研究不足,孔和作物生产率之间的联系仍然不确定。我们的审查强调了评估基本与巨福纳的关系的至关重要的需求,以及基本的植物营养素,例如钾,养分比以及各种因素的协同作用。了解P通过植物土壤和/或植物 - 微生物生态系统中的孔快速,有效地同化,这对于农作物的生产力和产量至关重要。
Fleishman Root Agrocology Lab在宾夕法尼亚州立大学研究项目描述:Fleishman Root Agrocology Lab正在寻找一名博士生来研究根系和深层土壤健康。农业土壤通常由于过度使用和不利的环境条件而遭受退化,这限制了其支持植物生产力的能力。因此,越来越多地促进了有利于土壤健康的实践,包括全年保持土壤中的生命根源。但是,我们对哪些根特性最有可能改善土壤特性,例如养分可利用性,碳固存和水浸润。该研究项目将检查四种多年生草料作物(三种草和苜蓿)的根系以及最多1米深的土壤特性。实验将在温室和现场进行。训练的潜在领域包括根生物生理学,土壤和根际微生物组分析以及土壤生物地球化学和水循环。根源农业生态实验室重视包容性的环境和来自各种个人,工作和教育背景的申请人。地点和研究生课程:宾夕法尼亚州立大学植物科学系Suzanne Fleishman博士将为博士生提供建议。州立大学,宾夕法尼亚州是一个中型城镇,拥有丰富的餐馆,经常的艺术活动,并迅速进入公园和远足径。研究项目的现场站点距离大学约25分钟路程。
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
4 Sniffing Search for the causes of strange odors in cosmetics by non-target analysis using GC-TOFMS ○Kabashima Fumie, Sakurai Masafumi, Estrella Ray Gel (LECO Japan (same)) 5 Development of structural analysis methods using GC-TOFMS and machine learning and application to analysis of aroma components in wood ○Kubo Azusa, Kubo Ayumu, Fukudome Takao,Ikukata Masaaki(国家电子公司,有限公司)6一种简单的方法,用于测量有机物等固体物质的气味成分(Yasda Hajime Yasda Hajime(年度高级工业科学与技术研究所))7 7的变化是从农业土壤中发出的臭味物质的变化,添加了不同的材料,添加了不同的材料,添加了koga chihiro 1) (1)萨加大学研究生院,2)Kagoshima大学研究生院)8使用超紧凑型气体色谱法对牛的质量评估TMR○Matsuzaki Yuya 1),Matsuzaki Yuya 1),Hattori Ikuo 2),Hattori ikuo 2)学校,2)Tokai University,3)Ballwave Co.,Ltd。)9使用异味和香气组件在长期存储新的柑橘类品种期间,使用异味和香气组件开发非破坏性质量评估方法,Saga ka No. 35,Saga ka考试,○○Nakajima ai,Nakajima ai,nakajima ai,nakajima ai,furutota nobuhiro,ueno dairo diaka agaa aga agaa agaa agaa agaa agaa comply
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
土壤以有机和无机形式(全球3000亿吨的订单)中存储了大量的碳,这比在大气和陆地上的碳多。由于耕种和侵蚀,在过去一个世纪中,美国1.66亿公顷的农业土壤损失了大量碳,但有明显的潜力可以扭转这一趋势并积极地管理农业土地,并采用从大气中捕获CO 2的策略。Terraforming土壤能量土壤射击研究中心(EERC)将通过有机和无机碳循环途径来研究新的生物和地理工程技术,以了解土壤中的可扩展性和负担得起的CO 2。该中心的总体目标是通过有机和无机途径促进对土壤中的CO 2抽吸的基本了解,测量与土地管理实践有关的土壤C存储能力,耐用性和区域变化。在目标1中,合成生物学工具将用于加速自然存在的植物和微生物性状,这些植物和微生物特征形成了CO 2固定过程,有机物形成和矿物质溶解。组合的基因组测序和同位素追踪方法将用于量化有机物如何随着时间的推移而产生的基本机制以及需要更好地反映在过程模型中的植物和微生物的特征。但目前,土壤风化,土壤生物学和有机物循环之间的相互作用知之甚少。在目标2中,该中心将集中在原发性矿物质和有机物 - 阵营络合物形成期间可能发生的积极相互作用上,这些可能会通过有机和无机途径组合来加速土壤CO 2的巨大潜力。中心的现场和基于实验室的研究将衡量如何将土壤管理方法“堆叠”在一起,从
最近发现的完整氨氧化剂(comammox硝基螺旋体)包含了进化枝A和B,该进化枝A和B建立了一个独立的一步硝化过程。但是,对于农业土壤中的环境驱动因素或栖息地分布知之甚少。先前对稻田中硝基核心的研究主要集中在小型样品上,并且缺乏对稻田中comammamox硝基螺旋体的多站点研究。在这项研究中,我们对36个稻田的调查进行了调查,旨在了解Comammox硝基核心社区结构,丰富性和多样性以及它们受环境因素的影响程度。comammox硝基螺旋藻被发现广泛分布在稻土中。comammox硝基螺旋向进化枝A的丰度大多低于进化枝B,而其多样性大多高于Bade B.相关分析表明,多个因素影响了Comammox硝基螺旋体的丰度,包括pH,土壤有机物,总碳,总氮,纬度,平均年温度和平均年降水量(P <0.05)。此外,comammox硝基螺旋藻群落和栖息地之间存在明显的关系,表明某些扩增子序列变体(ASV)在特定栖息地中具有独特的主导地位。的系统发育分析表明,comammox硝基螺旋藻的ASV是由稻田中已知序列聚集的,与其他栖息地中的已知序列有显着差异。这可能与稻田的独特栖息地有关。相比之下,comammox硝基螺旋向进化枝B没有显示出明显的栖息地依赖性。这些结果支持稻田中硝基核心的广泛分布和大量的丰富性,并提供了对农业生态系统中氮循环和营养管理的新见解。
增加的干旱威胁着土壤微生物群落及其在农业土壤中控制的多种功能。这些土壤通常被矿物营养物质受精,但尚不清楚这种施肥如何改变土壤多功能性(SMF)的能力,以维持干旱,以及植物土质相互作用如何影响这些效果。在这项研究中,我们使用山草原土壤来测试矿物营养素(氮和磷)添加的互动效应,并在中间有和没有植物(Lolium Perenne)的SMF上进行了干旱,并在中含有植物中(Lolium Perenne)。我们根据与土壤微生物在其生物量中储存碳(C),氮(N)和磷(P)的能力相关的8个微生物特性计算了SMF,并通过有机物解聚,矿化,硝化,硝化物和否定性加工来处理这些元素。为了研究SMF响应的基础机制,我们表征了使用16S和18S rRNA扩增子测序的土壤化学计量和微生物群落组成的提示变化。我们的结果表明,在植物存在时,受精会降低SMF干旱的耐药性,但在未种植的山地草原土壤中观察到了相反的情况。我们的分析表明,这是由于植物的相互作用,受精和干旱造成了与高SMF相关的四种耦合特性:高土壤水分,低蛋白质C限制,高细菌多样性和低细菌革兰氏革兰氏阳性阳性:革兰氏阳性:革兰氏负比例。总的来说,我们的结果表明,减少矿物肥料在山地草原中的植物生产可以提高土壤在干旱期间保持其多功能性的能力。最后,我们的研究清楚地证明了植物在SMF对全球变化的复杂反应中的重要性,并表明结合化学计量和微生物多样性评估是一种强大的方法,可以解散基本机制。