问题 /问题的细节作物残留物覆盖是农作物残留物的一种农业生态实践(例如< / div>玉米茎)在收获后将其保存在土壤上,而不是燃烧或喂给牲畜。津巴布韦政府的“ pfumbvudza”计划在全国范围内促进了这种做法。它被提升为一种“气候智能”实践,i)有助于减少土壤水的蒸发,从而减少作物的水应力,ii)有助于降低杂草压力,iii)强烈减少土壤侵蚀,并随后对有机物和养分的损失以及IV)损失,以及IV),从而有助于通过表皮碳序列造成气候变化。然而,这些广泛认可的福利也已知是背景因素,需要对小农户经营的各种农业生态地区和土壤类型进行验证
我非常感谢那些从一开始就成为Vacs Partners的人,包括AU,FAO,非洲孤儿作物财团,Agmip,Havos.ai,Cgiar和Rockefeller Foundation。VAC的定义特征之一是它不是项目或程序;顾名思义,这是一种“愿景”,现在是一种运动。关键区别在于,运动需要集体行动和责任才能进步。没有人拥有VACS探索和促进的概念。无需正式会员才能参加其工作。我希望任何人(无论他们是决策者还是研究人员,公司执行官或民间社会领袖,公职人员,私人公民或农民)都可以从VACS中汲取灵感并将其原则应用于自己部门的工作。在一起,个人行动有很大的不同。只有我们可以一起催化我们全球食品系统所需的变化。感谢您成为该运动的一部分!
摘要:陆地和土著品种包含农作物物种多样性的宝贵来源。它们在植物繁殖中的利用可能会导致产量提高和提高质量性状,并对各种非生物和生物胁迫的韧性。最近,基于基因组技术快速发展的新方法,例如破译的pangenomes,多摩管工具,标记辅助选择(MAS),全基因组范围的关联研究(GWAS)以及CRISPR/CAS9基因编辑,在现代植物繁殖中的陆地剥削方面极大地促进了陆地的剥削。在本文中,我们介绍了实施新的基因组技术的全面概述,并强调了它们在指出陆地和土著种类种植的遗传基础和在地中海地区种植的年度,多年生草本和木质作物的重要性。还需要进一步利用先进的技术来揭示陆地和土著品种的全部潜力,而这些品种也表明了未充分利用的遗传多样性。最终,从陆地和土著品种的研究中出现的大量基因组数据揭示了它们作为宝贵基因和繁殖特征的来源的潜力。也强调了陆地和土著品种在减轻农业和粮食安全气候变化带来的持续风险中的作用。
摘要。干旱给全球粮食安全带来了巨大的挑战,尤其是在气候变化的背景下。基因工程是一种有前途的解决方案,以开发能够承受水稀缺的同时维持生产力的抗旱作物。本文概述了目前的基因工程技术状态,旨在增强农作物的干旱耐受性及其对粮食安全的影响。了解植物对干旱胁迫的生理和分子反应对于鉴定靶基因和遗传操纵途径至关重要。各种基因工程方法,包括转基因技术,标记辅助选择,基因组编辑和合成生物学,提供多功能工具,以增强农作物的干旱韧性。尽管具有潜在的好处,但采用了基因工程的耐旱作物面临监管,社会经济和环境挑战。协调监管框架,解决公众的关注以及促进公平的技术访问对于实现农业基因工程的全部潜力至关重要。展望未来,基因组编辑技术的进步,OMICS方法的整合以及气候富别的育种计划有望在农作物中发展量身定制的干旱耐受性特征。通过促进跨学科的合作和创新,基因工程为建立更具弹性和可持续的食品系统提供了一种途径,能够在不断变化的气候下确保子孙后代的粮食安全。
在这个血清时代,智能传感器的增长彻底改变了农业,在精确和数据驱动的农业时代迎来了农业。本章概述了智能传感器在智能农业中的应用,强调了它们在实现更好的作物生产中的重要作用。面对全球人口不断增长和气候状况的不断变化,对农作物产量和资源效率提高的需求从未有所更大。由智能传感器授权的智能农业作为解决这些挑战的解决方案。虽然在农业中采用智能传感器会带来巨大的好处,但仍然存在挑战,包括数据安全性,互操作性和对小型农民的可及性。但是,随着技术的继续发展并变得更加易于使用,基于智能传感器的智能农业有望应对21世纪全球粮食安全和可持续性挑战的希望。本章提供了智能传感器在获得更好的作物生产以及更有效和可持续的农业实践中的重要作用。
S5。ans。(b)SOL。外交部长S Jaishankar博士正在德国举行的第60届慕尼黑安全会议。作为会议的一部分,Jaishankar博士将讨论有关“种植馅饼:抓住共同机会的小组讨论”。德国外交大臣安娜娜·巴尔博克(Annalena Baerbock)和美国国务卿眨眼也将与外部事务部长一起参加小组讨论。
为了确保这些产品在未来中保持有效和可行的工具,澳大利亚农作物的管理人员首先计划为澳大利亚农民,喷雾承包商和环境土地管理者提供免费使用的最佳用户,并提供免费使用的最佳实践指南,以实现负责任,安全有效的使用。这些资源包括:
气候变化对我们的食品系统构成了显着的威胁,它们高度暴露于复杂且不可预测的环境变化,并且更容易受到冲击,气候变化是增加这些系统脆弱性的主要原因。建立气候富裕的粮食系统将使我们能够处理这些冲击,复杂性和不可预测性,这最终有助于粮食安全和可持续的粮食系统。提供全球食品需求的农作物的有限范围使粮食系统更容易受到气候危害的影响。目前,超过50%的消耗卡路里仅来自三种主食(大米,玉米和小麦),留下了历史上被人类利用的各种营养丰富的植物(Hunter等,2019)。被忽视和未充分利用的农作物物种(NUS)作为满足不断增长的全球人口的食物和营养需求的高度有希望的解决方案(Chivenge等,2015)。nus也得到了粮农组织的认可,因为未来的智能食品(FSF)具有未开发的饥饿和营养不良的潜力。nus具有重要的特征,可以在诸如干旱耐受性,适合边缘农业土地的更严格的环境中恢复韧性,并能够使用低成本输入使用来壮成长(Padulosi等,2012; Adhikari et al。,2017)。值得注意的,未被充分利用的农作物物种提供多种供应,调节,文化和支持生态系统服务,以及多种环境和健康共同培养。这些促进了增强的饮食多样性,收入和可持续生计等结果(Mabhaudhi等,2022)。世界各地有足够的证据,强调将被忽视和未充分利用的农作物(NUS)纳入食品系统的重要性,以此作为增强面对气候变化的农业系统弹性的策略。NUS的促进主要取决于研发,收获后处理,新产品开发,增值和为农民创造市场访问。追求增强了非国际NU在粮食系统中的作用,开发
通过签署此计划,我保证所有信息均真实无误。我同意在 INTEGRITY 中列为过渡性经营。只有登录的授权 USDA 人员、TOPP 牵头合作伙伴和认证用户才能查看 INTEGRITY 中列出的过渡性经营。过渡性经营的列表也可能提供给联邦作物保险公司及其批准的保险提供商,以评估过渡性作物保险的资格。过渡性经营将不向公众开放。过渡状态并不意味着生产者将有资格获得有机认证;这需要完全遵守认证机构评估的规定。
在新元古代和古元古代时代时期,地质证据表明,当地球大部分表面覆盖在冰上时,地质的证据表明了几个“雪地地球”发作。这些全球尺度冰川代表了地球历史上最明显的气候变化。我们表明,在小行星撞击的大小与Chicxulub撞击相当的小行星影响之后的影响冬季可能导致冰 - 阿尔贝托的反馈和全球冰川化。使用最先进的气候气候模型,我们模拟了对工业前,最后冰川最大(LGM),白垩纪样和新元古代气候的影响后的气候反应。虽然在工业前和类似白垩纪的气候中温暖的海洋温度可以防止滚雪球的启动,但LGM的较冷海洋和冷的Neoperoroxoic气候场景迅速形成海冰,并表现出对海洋初始状况的高灵敏度。给出了冷弹丸气候的建议,我们认为通过大量影响,雪地地球的启动是一种强大的可能机制,正如其他人先前所建议的那样,并通过讨论地质测试来得出结论。