自工业革命以来,化石燃料燃烧和土地使用变化已导致二氧化碳(CO 2)的大量排放到大气中。在1850年至2020年之间,人为CO 2排放总计2420±240 GT,相当于陆地生态系统中存储的碳量(2500 GT; IPCC,2023)。当今大气中,大约有50%的发射CO 2仍然存在于辐射强迫,快速的气候变化,全球平均温度的升高以及一套相关的生态,社会和经济后果(例如,Huckelba和Van Lange,2020#15)。为了响应,量化和增强自然C隔离的努力增加了,尤其是在管理和审计可以直接进行的本地尺度上,而C隔离目标不与包括农业和城市定居在内的关键土地使用竞争(Freedman等人,2009年)。随着土地上空间的压力,对海洋环境的碳存储潜力的兴趣已加剧(例如,Nelemann和Corcoran,2009年; McLeod等,2011; MacReadie等人,2017年; Lovelock和Duarte,2019年)。 特别的重点是植被沿海的“蓝碳”生态系统,其中包括红树林,盐木和海草草地,海洋被子植物可以比许多陆地生态系统更具污染和储存碳(McLeod et al。,2011年)。Nelemann和Corcoran,2009年; McLeod等,2011; MacReadie等人,2017年; Lovelock和Duarte,2019年)。特别的重点是植被沿海的“蓝碳”生态系统,其中包括红树林,盐木和海草草地,海洋被子植物可以比许多陆地生态系统更具污染和储存碳(McLeod et al。,2011年)。这些生态系统还提供了多种生态系统服务,包括风暴浪潮保护,海平面上升,托儿所的养殖场,水的清晰度和栖息地(de los Santos等,2020),但在拥有历史悠久的范围的50%的地球上是最受威胁的生态系统,但已有遗失的范围(杜尔特(Duart),却是杜尔特(Duart)的50%。
摘 要: 针对传统温度预测方法难以充分捕捉多尺度信息,导致模型预测性能不佳等问题,该研究提出了一种基于 Informer 架构和长短时记忆网络( long short-term memory, LSTM )与多源数据融合的冠层区域温度预测模型。在编码层 中,采用稀疏注意力机制提取输入因子的多尺度信息及其与长时序数据之间的耦合关系;在解码层中,利用 LSTM 提取 短期时序依赖,以增强时间序列的连贯性,同时引入改进的反向残差前馈网络( improved residual feedforward network, IRFFN )以优化模型结构。首先采用孤立森林法对数据进行异常值清理,并进行了归一化处理;然后使用斯皮尔曼相关 系数法对冠层区域温度进行相关性分析,并选择相关程度较高的环境因子作为模型的输入特征;最终通过网格搜索法对 超参数进行优化,并通过迭代训练实现模型的最优配置。通过与其他 4 种主流算法进行对比分析,提出的 Informer- LSTM 在冠层区域温度预测方面表现出更高的精度,其平均绝对误差( mean absolute error, MAE )、均方根误差( root mean square error, RMSE )和决定系数( R 2 )分别达到了 0.166 、 0.224 ℃和 97.8% ,与基础模型 Informer 相比,冠层区 域温度的预测精度提高了 32.36% 。该模型在时间序列预测方面具有较高的精度,为区域气象温度的中短期精准预测提 供了一种新的技术方法。 关键词: 冠层 ; 温度 ; 非线性时间序列 ; 长短期记忆神经网络 ; Informer doi : 10.11975/j.issn.1002-6819.202409001 中图分类号: TP18 ; S165 文献标志码: A 文章编号: 1002-6819(2025)-07-0001-11
摘要 — 过去二十年来,星载激光雷达系统凭借其准确估算树冠高度和地上生物量的能力,在遥感领域获得了发展势头。本文旨在利用最新的全球生态系统动态调查 (GEDI) 激光雷达系统数据来估算巴西桉树人工林的林分尺度优势高度 (H dom) 和林分体积 (V)。这些人工林由于树冠覆盖均匀且可进行精确的实地测量,因此提供了有价值的案例研究。基于几个 GEDI 指标,使用了几个线性和非线性回归模型来估计 H dom 和 V。 H dom 和 V 估计结果表明,在低坡度地形上,使用逐步回归方法可获得最准确的 H dom 和 V 估计值,均方根误差 (RMSE) 分别为 1.33 m(R 2 为 0.93)和 24.39 m 3 .ha − 1(R 2 为 0.90)。解释 H dom 和 V 超过 87% 和 84% 变异性 (R 2 ) 的主要指标是表示 90% 的波形能量发生于地面以上高度的指标。对六种可用的不同处理算法发出的后处理 GEDI 指标值进行测试表明,H dom 和 V 估计的准确性取决于算法,使用算法 a5 相对于 a1,两个变量的 RMSE 均增加了 16%。最后,选择最后检测到的模式或最后两个模式中较强的模式的地面回波也会影响 H dom 估计精度,使用后者会导致 12 厘米 RMSE 降低。
在葡萄栽培中,通过超高的空间分解图像快速而准确地获取了冠层光谱信息以进行决策支持。普遍的做法涉及使用从纯藤冠像素获得的光谱数据创建活力图。基于对象的图像分析(OBIA)在常规方法中表现出由于其特征提取的功能而在树冠分类中表现出合理的效率。近年来,深度学习(DL)技术在果园监测中表现出了巨大的潜力,并利用了它们自动学习图像特征的能力。这项研究评估了不同方法的性能,包括掩盖R-CNN,U-NET,OBIA和无监督方法,以识别纯冠类像素。比较了阴影和背景检测方法的有效性以及错误分类像素对NDVI的影响。将结果与2021年和2022年生长季节进行的农艺调查进行了比较,重点是两个不同的物候阶段(BBCH65-BBCH85)。蒙版R-CNN和U-NET在整体准确性(OA),F1得分和与联合(IOU)相交方面表现出卓越的性能。在OBIA方法中,高斯混合模型(GMM)被证明是冠层分割的最有效的分类器,并且支持向量机(SVM)也表现出合理的稳定性。相反,随机森林(RF)和K-均值的准确性和较高的错误率产生了较低的误差率。由于准确性有限,因此在葡萄园行高的葡萄园排被高估了,而对于高活力的檐篷,NDVI被低估了。可显着提高确定系数,以进行总叶面积(TLA)与源自蒙版R-CNN和U-NET得出的NDVI数据之间的比较。还发现了来自GMM和SVM算法的NDVI数据的正相关性。关于叶叶绿素(CHL)和NDVI相关性,蒙版R-CNN和U-NET方法显示出较高的性能。此外,TLA和投影冠层区域(PCA)之间的关系得到了U-NET和Mask R-CNN的明显代表,而不建议使用PCA来估计叶绿素含量。这项调查确定,改善了葡萄树冠划界的贡献,可改善葡萄园活力监测,为葡萄酒生长提供了更准确,更可靠的农艺信息,以进行管理决策。
脂质纳米粒子 (LNP) 已成功进入临床,用于递送基于 mRNA 和 siRNA 的治疗方法,最近又被用作 COVID-19 疫苗。然而,人们对其在体内的行为,特别是细胞靶向性缺乏了解。LNP 的向性部分基于内源性蛋白质对粒子表面的粘附。这种蛋白质形成所谓的冠,可以改变这些粒子的循环时间、生物分布和细胞摄取等。反过来,这种蛋白质冠的形成取决于纳米粒子的特性(例如大小、电荷、表面化学和疏水性)以及它所来源的生物环境。由于基因治疗有可能针对几乎任何疾病,因此人们正在考虑除静脉途径之外的其他给药部位,从而产生组织特异性蛋白质冠。对于神经系统疾病,颅内注射 LNPs 会产生脑脊液衍生的蛋白质冠,与静脉注射相比,这可能会改变脂质纳米颗粒的性质。在这里,我们在体外研究了临床相关的 LNP 制剂中血浆和脑脊液衍生的蛋白质冠之间的差异。蛋白质分析表明,在人脑脊液中孵育的 LNPs (C-LNPs) 产生的蛋白质冠组成与在血浆中孵育的 LNPs (P-LNPs) 不同。脂蛋白作为一个整体,特别是载脂蛋白 E,在 C-LNPs 上占总蛋白质冠的百分比高于 P-LNPs。这导致与 P-LNPs 相比,C-LNPs 的细胞摄取有所改善,无论细胞来源如何。重要的是,更高的 LNP 摄取量并不直接转化为更有效的货物输送,强调有必要进一步评估此类机制。这些发现表明,生物流体特异性蛋白质冠会改变 LNP 的功能,这表明给药部位可能会影响 LNP 在体内的功效,并且需要在配方开发过程中加以考虑。
摘要:冠层燃料特性对于评估林分中的火灾危险和潜在严重程度至关重要。模拟工具为防火规划提供了有用的信息,以减少野火的影响,前提是存在具有足够空间分辨率的可靠燃料图。许多国家正在提供免费的机载 LiDAR 数据,为大规模改善燃料监测提供了机会。在本研究中,我们建立了模型,以估计松林区机载 LiDAR 的冠层基高 (CBH)、燃料负荷 (CFL) 和体积密度 (CBD),其中以不同的脉冲密度获取了四个点云数据集。使用来自 1 p/m 2 数据集的 LiDAR 指标对 CBH、CFL 和 CBD 进行拟合的最佳模型分别得出调整后的 R 2 为 0.88、0.68 和 0.58,RMSE (MAPE) 为 1.85 m (18%)、0.16 kg/m 2 (14%) 和 0.03 kg/m 3 (20%)。拟合模型的可转移性评估表明,根据 LiDAR 脉冲密度(高于和低于校准数据集)和模型公式(线性、幂和指数),精度水平不同。与较低(0.5 p/m 2 )或较高回波密度(4 p/m 2 )相比,指数模型和类似脉冲密度(1.7 p/m 2 )的结果最佳。还观察到冠层燃料属性方面的差异。
以下所有幻灯片上使用的基本图是来自古代和濒临灭绝的森林地图。(https://canopyplanet.org/tools/forestmapper/app)。以下是显示磨坊周围的区域。根据树冠地图,我们从没有古老和濒危的森林中来源。
摘要 光学设计和电子电路方面的最新进展使得近端传感器从被动式过渡到主动式。主动传感器不依赖自然光的反射,而是测量来自作物的调制光的反射,因此它们可以在所有光照条件下工作。这项研究比较了主动和被动冠层传感器在预测梅洛葡萄园 25-32 个随机选择位置的生物量产量方面的潜力。这两种传感器都提供了从转色期冠层天底视图估算的归一化植被指数 (NDVI),这可以很好地预测修剪重量。虽然被动传感器的红色 NDVI 更多地解释了生物量的变化(R 2 = 0.82),但它与修剪重量的关系是非线性的,最好用二次回归来描述(NDVI = 0.55 - 0.50 wt - 0.21 wt 2)。琥珀色 NDVI-生物量关系理论上的线性度更高,但在高生物量条件下无法验证。叶片中稳定同位素含量(13 C 和 15 N)的线性相关性提供了证据,表明冠层反射率可以检测到由于缺水和肥料氮吸收有限而导致的植物压力。因此,这些移动传感器提供的冠层反射率数据可用于改善葡萄园的特定地点管理实践。
需要森林监测工具来促进有效的、数据驱动的森林管理和森林政策。遥感技术可以提高森林监测的速度和成本效益,以及大规模森林属性制图(墙到墙方法)。数字航空摄影测量 (DAP) 是一种常见的、具有成本效益的机载激光扫描 (ALS) 替代方案,它可以基于常规获取的用于一般基础地图的航空照片。基于此类预先存在的数据集的 DAP 可以成为具有成本效益的大规模 3D 数据源。在森林特征描述方面,当有高质量的数字地形模型 (DTM) 时,DAP 可以生成描述树冠高度的摄影测量冠层高度模型 (pCHM)。虽然这种潜力似乎非常明显,但很少有研究调查过基于标准官方航空调查获得的航空立体图像的区域 pCHM 质量。我们的研究建议使用参考测量的树高数据库,根据按照此类协议获取的原始图像评估 pCHM 单个树高估计的质量。为了进一步确保该方法的可复制性,pCHM 树高估计基准仅依赖于公共森林清单 (FI) 信息,而摄影测量协议则基于低成本且广泛使用的摄影测量软件。此外,我们的研究调查了基于 FI 程序提供的邻近森林参数的 pCHM 树高估计之间的关系。我们的结果强调了使用 DAP 的 pCHM 提供的树高估计与现场测量和 ALS 树高数据具有良好的一致性。在树高建模方面,我们的 pCHM 方法与应用于 ALS 树高估计的相同建模策略得到的结果相似。我们的研究还确定了 pCHM 树高估计误差的一些驱动因素,并发现树木大小(胸高直径)和树木类型(常绿/落叶)等森林参数以及地形地貌(坡度)比图像调查参数(如重叠变化或数据集中的日照条件)更重要。结合 pCHM 树高估计,地形坡度、胸高直径 (DBH) 和常绿因子用于拟合预测实地测量树高的多元模型。文献中很少涉及这些方面,进一步的研究应侧重于如何将 pCHM 方法整合起来,以改进使用 DAP 和 pCHM 的森林表征。该模型在 r²(0.90 VS 0.87)和均方根误差(RMSE,1.78 VS 2.01 m)方面比将 pCHM 估计值与实地树高估计值联系起来的模型表现出更好的性能。我们的有希望的结果可用于鼓励使用区域航空正射影像调查档案以非常低的额外成本生成大规模优质树高数据,特别是在更新国家森林资源清查计划的背景下。
需要森林监测工具来促进有效的、数据驱动的森林管理和森林政策。遥感技术可以提高森林监测的速度和成本效益,以及大规模森林属性制图(墙到墙方法)。数字航空摄影测量 (DAP) 是一种常见的、具有成本效益的机载激光扫描 (ALS) 替代方案,它可以基于常规获取的用于一般基础地图的航空照片。基于此类预先存在的数据集的 DAP 可以成为具有成本效益的大规模 3D 数据源。在森林特征描述方面,当有高质量的数字地形模型 (DTM) 时,DAP 可以生成描述树冠高度的摄影测量冠层高度模型 (pCHM)。虽然这种潜力似乎非常明显,但很少有研究调查过基于标准官方航空调查获得的航空立体图像的区域 pCHM 质量。我们的研究建议使用参考测量的树高数据库,根据按照此类协议获取的原始图像评估 pCHM 单个树高估计的质量。为了进一步确保该方法的可复制性,pCHM 树高估计基准仅依赖于公共森林清单 (FI) 信息,而摄影测量协议则基于低成本且广泛使用的摄影测量软件。此外,我们的研究调查了基于 FI 程序提供的邻近森林参数的 pCHM 树高估计之间的关系。我们的结果强调了使用 DAP 的 pCHM 提供的树高估计与现场测量和 ALS 树高数据具有良好的一致性。在树高建模方面,我们的 pCHM 方法与应用于 ALS 树高估计的相同建模策略得到的结果相似。我们的研究还确定了 pCHM 树高估计误差的一些驱动因素,并发现树木大小(胸高直径)和树木类型(常绿/落叶)等森林参数以及地形地貌(坡度)比图像调查参数(如重叠变化或数据集中的日照条件)更重要。结合 pCHM 树高估计,地形坡度、胸高直径 (DBH) 和常绿因子用于拟合预测实地测量树高的多元模型。文献中很少涉及这些方面,进一步的研究应侧重于如何将 pCHM 方法整合起来,以改进使用 DAP 和 pCHM 的森林表征。在 r²(0.90 VS 0.87)和均方根误差(RMSE,1.78 VS 2.01 m)方面,该模型比将 pCHM 估计值与实地树高估计值联系起来的模型表现出更好的性能。我们的有希望的结果可用于鼓励使用区域航空正射影像调查档案以非常低的额外成本生成大规模优质树高数据,特别是在更新国家森林资源清查计划的背景下。