37 Langway(1958; 1967)。 38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -37 Langway(1958; 1967)。38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -38 Langway(1967,p。7)。39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -39 Martin-Nielsen(2016年,第95页)。40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。42“冰盖”是大于50,000 km 2的圆顶冰川。这种类型的冰川仅存在于格陵兰和南极。43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。(2010年,第33页)。有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。86 - 100)。44 Martin-Nielsen(2013年,第87 - 88)。45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。(1958年1月28日),给威利·丹斯加德的信; Renaud,A。([[1962年11月]),Egig 1957 -
摘要。消费级数码相机已成为无处不在的科学配件。特别是在冰川学中,短期变化的重要性得到认可,这促使它们被部署用于越来越时间紧迫的观测。然而,这种设备从未用于精确计时,因此在使用时需要对报告的图像时间中的系统、舍入和随机误差进行适当的管理。本研究将时钟漂移、亚秒级报告分辨率和时间戳精度描述为精确相机计时的主要障碍,并记录了 17 家领先制造商的相机型号的亚秒级能力。我们提出了一种完整且易于理解的方法来校准相机以实现绝对计时,并提供一套支持脚本。两个冰川学案例研究说明了这些方法与当代调查的关系:(1) 使用从 GPS 轨迹日志时间插值的相机位置对航空摄影测量调查进行地理参考;(2) 将冰川崩解事件的视频与同步地震波形耦合。
在过去十年中,在 Schirmacheroase 地区(南纬 71 度,东经 12 度),开展了各种大地测量和冰川学研究活动。多次进行了三次大地测量-冰川学横断面研究,以研究冰速、积累和消融以及冰面高度变化。反复的地面调查表明,大片蓝冰区域的表面高度显著下降约 15 厘米。本文介绍了 Schirmache 附近内陆冰的第一个干涉冰速场。合成孔径雷达 (SAR) 数据的干涉分析与地面信息相结合。由于该地区只有 ERS-I&2 串联任务图像对,因此使用数字高程模型 (DEM) 来消除地形影响。通过干涉测量法证明,这部分内陆冰层的冰速高达 100 米/年。
苏黎世联邦理工学院冰川学教授 Matthias Huss 博士介绍了他多年来对冰川的研究成果,冰川是气候变化的一个敏感指标。在过去 12 个月中,每个月的气温记录都创下新高,平均气温比工业化前水平上升了 1.63°C。二氧化碳正以前所未有的速度在大气中积累,目前的二氧化碳浓度已达到 80 万年来的最高水平。
在地球物理专业中,我们使用观察性,正向和反向建模方法研究地球和其他行星的动力学和结构。 主题包括环境研究,海洋过程,水文学,冰川学,火山,地震,构造,影响,资源,浅层危害以及行星地幔的对流。 从全球研究到微观量表,以及从几秒钟到数十亿年的时间尺度上发生的过程,地球物理学家对地球的物理过程和特性提供了基本见解。 拥有地球物理学位,学生能够在各种学科中解决尖端问题,从基本的地球和气候科学研究到能源领域的应用,数据科学和技术以及国家安全。在地球物理专业中,我们使用观察性,正向和反向建模方法研究地球和其他行星的动力学和结构。主题包括环境研究,海洋过程,水文学,冰川学,火山,地震,构造,影响,资源,浅层危害以及行星地幔的对流。从全球研究到微观量表,以及从几秒钟到数十亿年的时间尺度上发生的过程,地球物理学家对地球的物理过程和特性提供了基本见解。拥有地球物理学位,学生能够在各种学科中解决尖端问题,从基本的地球和气候科学研究到能源领域的应用,数据科学和技术以及国家安全。
摘要 自动气象学 - 冰 - 地球物理观测系统 3 (AMIGOS-3) 是一个多传感器冰上海洋系泊和天气、摄像机和精密 GPS 测量站,由 Python 脚本控制。该站设计为部署在极地浮冰上,无人值守运行长达数年。海洋系泊传感器(Seabird MicroCAT 和 Nortek Aquadopp)记录电导率、温度和深度(CTD;以 10 分钟为间隔报告)以及流速(每小时报告一次)。Silixa XT 光纤分布式温度传感 (DTS) 系统通过冰和海洋柱提供温度曲线时间序列,节奏为 6/天到 1/周,具体取决于可用的站点功率。站点数据的子集由铱调制解调器遥测。双向通信使用单脉冲数据和文件传输协议,有助于站点数据收集更改和电源管理。电源由太阳能电池板和密封铅酸电池系统提供。 2020 年 1 月,思韦茨东部冰架 (TEIS) 安装了两套 AMIGOS-3 系统,可提供持续到 2022 年的数据。我们讨论了该系统的组成部分,并介绍了几组数据集,总结了观测到的气候、冰和海洋状况。关键词:仪器仪表、冰川学、实地观测、自动化、气候变化 1 简介 全年监测环境或地球物理系统是了解其演变过程的关键部分,而确定表征对变化(例如气候变化)的反应的事件则有助于更好地预测系统将如何演变。由于极地冬季环境带来的挑战,建立长期自动监测对于极地地区尤其困难。尽管自从早期发表有关类似站点的文章(Scambos 等人,2013 年)以来,已经开发出了各种各样的用于极地工作的自主观测系统,但迄今为止的大多数自动化系统都是针对特定的主要测量(例如地震活动、冰或岩石运动、天气监测或海洋状态)。这里我们描述了一个系统,该系统旨在同时观察多个环境和地球物理参数,观察区域内正在发生复杂且相互关联的变化。冰面或冰底快速融化的区域、异常的冰架或冰川动态或自由漂移的冰山都是这种多传感器多年观测系统的潜在场所。连续数年收集的气候-冰-海洋观测数据极大地促进了对气候(或天气)、海洋环流、冰损失和冰川加速之间局部尺度相互作用的理解和建模。自动气象学-冰-地球物理-观测系统-3(以下简称“AMIGOS-3”)站已经为多项已发表的研究做出了贡献,这些研究涉及气候、海洋、以及冰架上的冰川过程(Lee 等人,2019 年;Wåhlin 等人,2021 年;Alley 等人,2021 年;Wild 等人,2021 年;2022 年;Dotto 等人,2022 年;Maclennan 等人,2023 年)。
Surjeet Singh(Sc。‘g'&head) - 地下水建模,河流水文学,水力化学Soban S. Rawat(Sc.'f') - 山区水文学,弹簧棚管理Ashwini A. Ranade(sc。'd') - 亚洲季风,全球气候变化Sunil Gurrapu(Sc.'d') - 水文极端,气候变化Vishal Singh(sc。'd') - 融雪和冰川融化径流建模,RS&Gis lavkush K. Patel(Sc.'d') - 冰川学,冰川 - 溶质建模,RS和GIS KAPIL KESARWANI(SC。'd') - 冰冻,大气和环境科学Deepak S. bisht(sc。'C') - 水文建模,气候变化,RS&GIS,Springs Akshaya Verma(Sc.在'c') - 天气和气候建模,合奏预测riyaz mir(sc。在'B') - 气候变化,水文建模Jatin Malhotra(Sc。'b') - 雪与冰川,水文学,RS&GIS Sachchidanand Singh(Sc.'b') - 水质,洪水管理,RS和GIS Siddharth Arora(Sc.'b') - 水文建模,同位素水文,RS&GIS
在完成这项工作时,我想感谢我在苏黎世联邦理工学院的导师 Martin Detert 博士,感谢他指导我完成机载图像测速这一主题,并在整个论文过程中给予我帮助。我想特别感谢我在米兰理工大学的导师 Livio Pinto 教授,感谢他对该主题的关注以及在我工作期间(尤其是在米兰的最后几个月)对我的支持。我要感谢苏黎世联邦理工学院水力学、水文学和冰川学 (VAW) 实验室负责人 Robert Boes 教授接受我作为 VAW 部门的访问学生。我要感谢 Fudaa-LSPIV 的开发人员 Magali Jodeau、Jérôme Le Coz、Alexander Hauet 以及 RIVeR 的开发人员 Antoine Patalano 对我的工作感兴趣并给予建设性反馈。还要感谢 Jörg Hammer 和瑞士联邦环境局 (FOEN) 提供在苏黎世 Unterhard 测量站获取的利马特河数据。这些数据对于比较我的 AIV 结果至关重要。最后,我要感谢 Francesco Avanzi,感谢他支持我决定搬到苏黎世来发展我的论文,还要感谢我所有的朋友,特别是 Daniele Moncecchi,我在那里和他共度了时光。
我在日本东京大学获得了水资源工程博士学位,在泰国曼谷亚洲理工学院获得了遥感和 GIS 硕士学位。凭借大约 35 年的研究/学术经验,我曾在东京日本宇宙航空研究开发机构 (JAXA) 担任科学家,在新德里能源与研究机构 (TERI) 担任研究员。我在克什米尔大学 (KU) 担任多个部门负责人超过 15 年,还曾于 2020 年 5 月至 2021 年 8 月担任 KU 的研究院长。自 2021 年 8 月以来,我目前担任克什米尔伊斯兰科技大学 (IUST) 的副校长,这是一所州立大学。迄今为止,我在国家/国际期刊上发表了 250 多篇同行评审文章,并指导了 25 名博士生和 05 名硕士生。除了学术、行政和咨询工作外,我还参与了喜马拉雅地区水文学、冰川学和气候变化研究的合作和赞助研究。我是州、国家和国际层面的多个与环境、水、气候变化和灾害管理有关的决策委员会和工作组的成员。
Surjeet Singh(Sc。‘g'&head) - 地下水建模,河流水文学,水力化学Soban S. Rawat(Sc.'f') - 山区水文学,弹簧棚管理Ashwini A. Ranade(sc。'd') - 亚太地区季风,全球气候变化Sunil Gurrapu(Sc.'d') - 水文极端,气候变化Vishal Singh(sc。'd') - 融雪和冰川融化Runoư建模,RS&GIS LAVKUSH K.PATEL(SC。'd') - 冰川学,冰川流质建模,RS和GIS KAPIL KESARWANI(SC。'd') - 冰冻,大气和环境科学Deepak S. bisht(sc。'C') - 水文建模,气候变化,RS&GIS,Springs Akshaya Verma(Sc.在'c') - 天气和气候建模,合奏预测riyaz mir(sc。在'B') - 气候变化,水文建模Jatin Malhotra(Sc。'b') - 雪与冰川,水文学,RS&GIS Sachchidanand Singh(Sc.'b') - 水质,洪水管理,RS和GIS Siddharth Arora(Sc.'b') - 水文建模,同位素水文,RS&GIS