发动机 E-01 燃油系统结冰推进燃油系统结冰威胁您可能需要一份问题文件来确定符合 § 33.67 的方法,以解决冰可能在飞机燃油系统中积聚并释放到发动机燃油入口对发动机造成的威胁。本问题文件将要求根据 § 33.67(b)(4)(ii) 进行认证测试,以证明从飞机系统释放出的冰或夹带在飞机燃油供应中的冰不会聚集在燃油/油热交换器 (FOHE) 的表面或燃油系统的任何其他部分,并导致燃油流动受限。潜在的冰源包括夹带的冰晶和固体冰块,它们可能由于温度变化、燃油流或振动等因素而突然释放。这是一个与飞机级要求有关的接口问题。发动机制造商可能需要与飞机制造商协调。
甲基苯丙胺是一种强效且容易上瘾的兴奋剂,会影响中枢神经系统。使用甲基苯丙胺可能会导致活动和话多增加、食欲下降以及产生愉悦的幸福感或欣快感。它可以注射、吸食、抽吸或口服。甲基苯丙胺也被称为冰毒或冰晶,是一种白色、无味、味苦的结晶粉末,可轻松溶解在水或酒精中。1 甲基苯丙胺被美国缉毒局 (DEA) 列为二级兴奋剂。苯丙胺类药物在治疗注意力缺陷多动障碍 (ADHD) 方面的医疗用途有限,在某种程度上也是一种减肥辅助剂,但很少被开处方。2 这些甲基苯丙胺类药物不应与更常用的右旋苯丙胺类药物相混淆,后者用于治疗发作性睡病和注意力缺陷多动障碍。吸食甲基苯丙胺会导致一系列不良健康后果,包括精神病、心血管和肾功能障碍、传染病传播和过量服用。3
运营计划将通过整合来自各种 FAA 和国家气象局 (NWS) 传感器和气象信息系统的数据来提供此类改进的气象信息。图 1 显示了 ITWS 的主要数据来源和该系统的一些主要用户。图 1 强调了 ITWS 的一项重要技术特征 - 整合来自各种来源的知识,以提供一套有关机场航站区运行重要天气的信息产品。从历史上看,降水的雷达反射率一直是航站区风暴信息的主要来源,机场地面风、温度和湿度信息则出现在单独的字母数字显示屏上。然而,在确定天气的危险程度和时间演变时,热力学因素(即温度和湿度)、风和风暴微物理过程(例如冰晶的形成)与雷达反射率一样重要。通过以科学合理的方式使用各种数据源,ITWS 可以通过创建无法从传感器单独获取的信息产品来解决上述不足之处。ITWS 将通过两种方式实现其主要目标,即减少延误:直接向 FAA 主管和交通管理人员提供信息,以便他们能够更积极地工作以实现高效
冰晶特性:对于水,如图 1 所示,已制备并成像了几种不同大小的冰。在上图中,将单个水滴放入 LN2 中生成球形冰球(~5 毫米)。中间图使用喷雾沉积形成柔软的冰层。下图来自冷凝,其产生小至 100 m 的晶体尺寸。这种根据挥发物设计冰粒度的能力为潜在的样品请求提供了额外的控制柄。例如,可以为超细材料请求小晶体以进行 ISRU 测试和资源提取。另一个示例是使用更大的 5 毫米冰球在 PSR 内进行流动性测试。对各种挥发物重复此测试过程,包括但不限于 CH3OH、H2S/水、NH3/CH3OH 以及结合 CO2 喷雾系统。为了进行特性分析,我们有一个位于 LN 2 的单独水平冷板和一个位于上方的摄像系统,以便可以测量接近的颗粒尺寸,并在有限熔化的过程中获得测试图像。
目录(总体布局) CS-25 大型飞机序言手册 1 — 认证规范子部分 A — 总则子部分 B — 飞行子部分 C — 结构子部分 D — 设计和构造子部分 E — 动力装置子部分 F — 设备子部分 G — 操作限制和信息子部分 H — 电气线路互连系统子部分 J — 辅助动力装置安装附录 A附录 C附录 D附录 F附录 H — 持续适航说明附录 I — 自动起飞推力控制系统(ATTCS)附录 J — 紧急演示附录 K — 交互系统和结构 附录 L 附录 M — 降低燃油箱可燃性的方法 附录 N — 燃油箱可燃性暴露 附录 O — 过冷大滴结冰条件 附录 P — 混合相和冰晶结冰包层(深对流云) 附录 Q — 批准陡峭进近着陆(SAL)能力的附加适航要求 附录 R — HIRF 环境和设备 HIRF 测试水平 附录 S — 非商业运营飞机和低载客量飞机的适航要求 手册 2 – 可接受的合规方式 (AMC) 简介 AMC – 子部分 B AMC – 子部分 C AMC – 子部分 D AMC – 子部分 E AMC – 子部分 F AMC – 子部分 G
目录(总体布局) CS-25 大型飞机 序言手册 1 — 认证规范 子部分 A — 总则 子部分 B — 飞行 子部分 C — 结构 子部分 D — 设计和建造 子部分 E — 动力装置 子部分 F — 设备 子部分 G — 操作限制和信息 子部分 H — 电气线路互连系统 子部分 J — 辅助动力装置安装 附录 A 附录 C 附录 D 附录 F 附录 H — 持续适航说明 附录 I — 自动起飞推力控制系统(ATTCS) 附录 J — 应急演示 附录 K — 交互系统和结构 附录 L 附录 M — 降低燃油箱可燃性的方法 附录 N — 燃油箱可燃性暴露 附录 O — 过冷大滴结冰条件 附录 P — 混合相和冰晶结冰包层(深对流云) 附录 Q — 批准陡峭进近着陆(SAL)能力的附加适航要求 附录 R — HIRF 环境和设备 HIRF 测试水平 附录 S — 非商业运营飞机和低载客量飞机的适航要求 手册 2 – 可接受的合规方式 (AMC) 简介 AMC – 子部分 B AMC – 子部分 C AMC – 子部分 D AMC – 子部分 E AMC – 子部分 F AMC – 子部分 G
冰形成检测在电信和航空药物中很重要,例如,飞机翅膀上的冰影响其空气动力学性能,并导致致命的事故。尽管存在许多类型的传感器,但探索冰的电阻传感器的探索很差。但是,由于它们的简单性以及在大面积上安装一系列传感器以绘制机翼上的冰层的可能性,因此它们具有吸引力。湿气离子导体已被证明用于电阻冰的传感,但它们的高电阻阻止了传感器阵列的读数。在这项工作中,混合离子电源聚合物导体(MIEC)在第一次进行冰检测时被考虑。聚合物混合物聚(3,4-乙二醇二噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)溶液沉积在一对电极上。传感器在水液体之间的过渡阶段中显示出电阻的突然上升。提出,pedot中的形态和电子传输会受到冰冻事件的影响,因为在形成冰晶时,富含PSS的相中的吸收水会在PSS富时进行扩张。在航空应用中,进行了在航空级和冷冻检测的预先序列层中的感应层整合的成功测试,以验证冰的检测原理。
目录(总体布局) CS-25 大型飞机 序言手册 1 — 认证规范 子部分 A — 总则 子部分 B — 飞行 子部分 C — 结构 子部分 D — 设计和建造 子部分 E — 动力装置 子部分 F — 设备 子部分 G — 操作限制和信息 子部分 H — 电气线路互连系统 子部分 J — 辅助动力装置安装 附录 A 附录 C 附录 D 附录 F 附录 H — 持续适航说明 附录 I — 自动起飞推力控制系统(ATTCS) 附录 J — 应急演示 附录 K — 交互系统和结构 附录 L 附录 M — 降低燃油箱可燃性的方法 附录 N — 燃油箱可燃性暴露 附录 O — 过冷大滴结冰条件 附录 P — 混合相和冰晶结冰包层(深对流云) 附录 Q — 批准陡峭进近着陆(SAL)能力的附加适航要求 附录 R — HIRF 环境和设备 HIRF 测试水平 附录 S — 非商业运营飞机和低载客量飞机的适航要求 手册 2 – 可接受的合规方式 (AMC) 简介 AMC – 子部分 B AMC – 子部分 C AMC – 子部分 D AMC – 子部分 E AMC – 子部分 F AMC – 子部分 G
3D冷冻打印(3DFP)将按需滴落(DOD)喷墨打印与冷冻铸造相结合,以制造具有定制几何形状的轻质多功能气凝胶。冷冻铸造是一种高效且易于实施的方法,能够为许多不同的应用制造多孔海绵状结构。该过程通过控制制造条件和冷冻动力学来定制最终产品的微观结构(即孔隙形貌、排列、平均尺寸分布等)。它与DOD打印的结合提供了设计宏观结构的能力,而无需依赖模具,正如报道的由石墨烯、银纳米线和其他纳米复合材料制成的3D冷冻打印气凝胶一样。在本文中,我们使用市售的胶体二氧化硅墨水进行了原位X射线成像,以了解3DFP中的内部过程动态。我们研究了具有以下层次结构的3DFP过程:首先,单个液滴;然后,从液滴聚结中获得均匀的线条;最后,逐层沉积三条连续的线条。借助 X 射线成像,通过观察印刷线尖端后的冻结前沿内部,现场显示了材料沉积和冻结速率之间的平衡的重要性。通过观察到的从下层到上层的冰晶,还显示了基板温度对消除不良界面边界的影响。
气溶胶会影响从单个云到地球的量表的降水速率和空间模式。然而,关于在空间和时间尺度上多种效应的基本机制和重要性仍然存在很大的不确定性。在这里,我们回顾了这些效果背后的证据和科学共识,通过修改辐射通量和能量平衡来归类为辐射效应,以及通过修饰云滴和冰晶的修改,将其归类为辐射效应。存在广泛的共识和强有力的理论证据,表明气溶胶辐射效应(气溶胶 - 放射相互作用和气溶胶 - 云相互作用)充当降水变化的驱动因素,因为全球平均降水受到能量和表面蒸发的约束。同样,气溶胶辐射效应会导致大规模降水模式的据可查的偏移,例如间受反应收敛区。气溶胶对较小尺度下降水的影响的程度尚不清楚。尽管存在广泛的共识和有力的证据表明,气溶胶扰动微物理会增加云滴数量并减少液滴大小,从而减慢了降水液滴的形成,但总体气溶胶对跨尺度的降水的总体效应仍然高度不确定。全球云解析模型提供了调查目前在全球气候模型中尚未很好地代表的机制,并与较大的规模连接局部效果。这将增加我们对预测气候变化影响的信心。