格陵兰岛在公元86年至1997年的2厘米分辨率下,年度为NS1-2011年年表。Pangea,272 https://doi.org/10.1594/pangaea.940553; Colle Gnifetti:Sigl,Michael;艾布拉姆(Nerilie J)加布里里(Jacopo);詹克(Jenk),273西奥(Theo M);奥斯蒙特,迪米特里; Schwikowski,Margit(2018):Black Carbon(RBC),Bismuth,Lead和274个从1741年至2015年的公元174个年度记录,来自Colle Gnifetti Ice Core(瑞士/意大利阿尔卑斯山)。Pangea,275 https://doi.org/10.1594/pangaea.894785;山Elbrus:doi:10.5194/acp-17-3489-2017;通过加拿大极地数据目录:TTPS://www.po- 277 lardata.ca/pdcsearch/pdcsearch.jsp?可以根据要求从通讯作者那里获得后处理278个代码。279
摘要。这项研究介绍了一种新型的动力系统模型,旨在捕获Dansgaard-Oeschger(DO)事件的高度非周期性。由于其可变持续时间(有些持续了1世纪,而其他事件跨越了多个毫伦),因此很难充分建模。利用从Stommel模型得出的简化的两方程式框架,我们的方法集成了一个内部控制参数,该参数充当反馈参数(在南极底部水(AABW)地层上)。通过分析方法和数值方法,我们建立了一个合适的参数域,在该域中,新调整的模型可以准确地复制DO的古气候记录,如摘要统计信息所描述的事件的古气候记录所述,该记录是从冰核数据中得出的。分析还表明,没有新的控制参数,该模型没有合适的pa-rameter域,在该域中可以重现冰核记录中看到的广泛的事件特征。这项研究提供了对这些高度显着的气候现象的基本机制的新见解,以及通过允许新模型的参数随时间变化而被迫强迫它们的必要时间尺度。这使我们的模型可以在捕获与观察性记录相匹配的定时特征的逼真的事件序列时实现前所未有的精度。这个重新定义的模型不仅增强了我们对DO cycles的理解,而且还展示了简单动力学系统模拟复杂气候相互作用的潜力。
在南极的表面下方是数十万年来大气组成的变化的完美记录。这个独特的档案使我们能够在1950年代现代大气监测开始之前重建大气CO 2,准确率仅为百万分之几。数据揭示了大气中的自然变化在冰川间冰期,千禧一代和百年纪念尺度上,因此随着时间的推移提供了可靠的辐射性重建。此外,可以以足够精度测量CO 2的稳定同位素,以在这些相同的时间尺度上量化CO 2的源和下沉。组合,CO 2的浓度和同位素组成使我们能够约束过去的气候灵敏度(即气候如何响应CO 2的变化)和碳气候反馈(即碳循环如何响应气候变化的碳循环))。
从森林区域传输的空气中微生物可以通过形成冰核来影响云形成。然而,尚不清楚空气传播微生物在森林地区的垂直运输。在夏季,秋季和冬季,我们在三个高度上收集了三个高度的气溶胶,[地面(2 m),冠层顶部(20 m)和高于树冠(500 m)],以分析垂直分布在森林上的机载微生物群落。在夏季和秋季,微生物颗粒在森林区域(顶部和地面)保持相似的浓度,并降低到上面顶篷区域的微生物浓度的1/10。冬季的颗粒浓度表示有效的垂直混合在500 m以下。高通量DNA测序表明,空气中的微生物群落由与衰减植物垃圾降解相关的陆地和浮游物种组成。无论三个季节如何,上面的树冠都由门静脉细菌和富公司的耐大气应激细菌主导。与细菌不同,琼脂菌的蘑菇型真菌成员的相对丰度超过了冠层,主要是在整个夏季和冬季,而霉菌型真菌dothideymosycetes物种经常在秋天的所有三个高度上发现。从三个高度的空气样品中获得的镰刀菌,假单胞菌和芽孢杆菌分离物,表明水滴冷冻中的冰成核的高活性