摘要。在全球范围内,航空的排放会通过复杂的过程影响地球的气候。捕捉卷曲和二氧化碳排放是导致航空辐射强迫气候的最大因素。概要卷曲,就像天然的卷云一样,会影响地球的气候。即使进行了广泛的研究,与其他航空对气候的影响相比,气候影响的重要性仍然存在主要的不确定性,需要进一步研究。概括的卷心包括线性缩小和相关的cirrus云;这些特征在于冰颗粒特性,例如大小,浓度,混合,灭绝,冰水含量,光学深度,几何深度和云覆盖率。由于预计空气流通量的增加,捕捉片的气候影响可能会加剧。全球围栏cirrus的辐射强迫有可能达到三倍,并且可以达到160 mwm - 2到2050年。此预测基于空气流通的预期增长,并可能转移到更高的高度。缩尾卷心的未来气候影响受到空气流动中的幅度和地理传播,燃料效率的进步,使用替代燃料的影响以及气候变化对背景大气层的影响的因素所影响。这项研究回顾了影响围栏形成以及围栏和围栏卷心的微物理过程。研究突出了知识和不确定性的差距,同时概述了未来的研究重点。更重要的是,该研究还探讨了全球观察数据集,以进行关注,当前分析和未来的预测,并将有助于评估与各种缓解策略相关的有效性和权衡。
鉴于国际能源机构(IEA)2020特别报告,该报告估计全球二氧化碳(CO 2)存储的能力在8,000至55,000千兆的范围内,这是提高碳存储效率并开发出色分销系统的必要性。本研究的重点是通过全面的系统分析优化基于吸附的碳储存单元,在Comsol Multi-physics™框架中采用有限元方法,以根据热力学约束来整合能量,质量和动量保护原理的能量,质量和动量保护原理。分析需要在指定的压力为9 MPa和302 K的初始温度下检查存储单元的充电和放电过程,并用冰水提供冷藏。从模拟中发现的结果强调了在操作阶段观察压力和温度波动的重要性,显示出充电周期结束时储罐中部区域的温度较高,与排放完成后温度较低相比。此外,观察到速度的梯度,从沿储罐轴的入口点下降。该研究强调了存储CO 2的可行性明显高于IEA到2055年IEA“可持续发展”方案所预测的100 GT,而陆上存储的可能性可能超过近海能力。研究通过在整个吸附 - 吸附周期中为新颖的CO 2吸附剂开发预测模型,涵盖所有相关的运输现象。该模型可针对H 2存储的现有数据验证,从而促进了不同储罐位置的压力和温度变化的预测。这项工作不仅通过增强对碳储存单元内热效应的理解的理解,而且还强调了高级建模技术在通过改进的液体碳存储解决方案来加强环境保护工作中的作用。