良好的制造实践。寒冷是将鱼类或鱼类制品冷却到融化冰的温度的过程。可以通过使用冰,冷藏水,海水和淡水或冷藏海水的冰浆来实现寒冷。同样,冻结是足以将整个产品温度降低到足够低的水平,以保持鱼的固有质量,并且在运输,存储和分配期间一直保持在低温,直至最终销售的时间。以适当的设备进行的冻结过程,以使最大结晶的温度范围迅速通过。除非和直到产物温度达到–18 o C(0 O F)或在热稳定后的热中心,否则不得将快速冷冻过程视为完整。(2)冰冷/冷冻的甲壳类动物包括清洁,整体或剥皮的甲壳类动物(虾/虾,螃蟹和龙虾),它们在生,冷冻或冷冻
摘要 已经通过实验测量了波长范围为 300 – 1,100 nm 的广谱太阳辐射对不同粒径范围的水和二氧化碳冰的穿透深度。这两种冰成分都在火星表面被发现,并被观测到为表面霜冻、积雪和冰盖。之前已经测量过雪和板冰的 e 折叠尺度,但了解这些最终成员状态之间的行为对于模拟与火星上冰沉积物相关的热行为和表面过程非常重要,例如晶粒生长和通过烧结形成板冰,以及二氧化碳喷射导致蜘蛛状物形成。我们发现穿透深度随着晶粒尺寸的增加而以可预测的方式增加,并且给出了一个经验模型来拟合这些数据,该模型随冰成分和晶粒尺寸而变化。
良好的生产规范。冷却是将鱼或鱼产品冷却到接近融冰温度的过程。冷却可以通过使用冰、冷冻水、海水和淡水的冰浆或冷藏海水来实现。同样,冷冻是足以将整个产品的温度降低到足以保持鱼的固有质量的水平的过程,并且在运输、储存和分销直至最终销售时一直保持这种低温。冷冻过程在适当的设备中进行,以便快速通过最大结晶温度范围。除非产品温度在热稳定后在热中心达到-18 o C(0 o F)或更低,否则速冻过程不应被视为完成。(2)冷冻/冷冻甲壳类动物包括干净的、完整的或去皮的甲壳类动物(虾/对虾、螃蟹和龙虾),它们可以是生的、冷冻的或冷冻的
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
摘要 —近年来,全球风力发电机组的装机容量快速增长,然而高海拔或高纬度地区的风力发电机组容易遭受冰冻灾害,严重造成风力发电机叶片结冰,影响其气动性能。目前已有大量文献提出了多种风力发电机防冰系统(IPS)方法,但目前的防除冰技术大多只注重防冰效果,而忽视了防除冰效率。因此,本文对现有的风力发电机防除冰技术的原理、应用及相关研究进行了综述,分为被动防除冰技术与主动防除冰技术。此外,本文还指出,机械除冰方法在风力发电机叶片上具有广阔的发展前景和巨大的利用潜力,主要是在航空航天领域应用的电脉冲和气动除冰技术。本文还介绍了这两种技术的优越性以及进一步的研究方向,旨在为风力发电机防冰提供有价值的参考。
从森林区域传输的空气中微生物可以通过形成冰核来影响云形成。然而,尚不清楚空气传播微生物在森林地区的垂直运输。在夏季,秋季和冬季,我们在三个高度上收集了三个高度的气溶胶,[地面(2 m),冠层顶部(20 m)和高于树冠(500 m)],以分析垂直分布在森林上的机载微生物群落。在夏季和秋季,微生物颗粒在森林区域(顶部和地面)保持相似的浓度,并降低到上面顶篷区域的微生物浓度的1/10。冬季的颗粒浓度表示有效的垂直混合在500 m以下。高通量DNA测序表明,空气中的微生物群落由与衰减植物垃圾降解相关的陆地和浮游物种组成。无论三个季节如何,上面的树冠都由门静脉细菌和富公司的耐大气应激细菌主导。与细菌不同,琼脂菌的蘑菇型真菌成员的相对丰度超过了冠层,主要是在整个夏季和冬季,而霉菌型真菌dothideymosycetes物种经常在秋天的所有三个高度上发现。从三个高度的空气样品中获得的镰刀菌,假单胞菌和芽孢杆菌分离物,表明水滴冷冻中的冰成核的高活性
道路盐 (NaCl) 是主要的防雪防冰材料。盐通常根据佛蒙特州的合同购买。FY21 合同授予了嘉吉;当地经销商是伯灵顿的 Barrett's Trucking @ 863-1311。DPW 每年使用大约 4000 吨道路盐。街道维护经理负责订购和盘点盐。整个盐库存都存放在松树街 645 号。氯化镁 (MgCl2) 和 Promelt Magic Minus Zero 等液体被用来减少清理道路所需的盐量。安全数据表 (SDS) 可在每辆卡车的活页夹中找到,也可在街道维护区的 SDS 活页夹中找到。作为礼节,伯灵顿业主可以在不影响城市运营的情况下,每冬天从松树街 645 号的盐棚取 (1) 桶 5 加仑的盐。
1.失速警告加热 不要求 要求 2.可靠性标准(冗余电源) 不要求 要求 3.关键区域保护 不要求 要求 4.显示执行预期功能 要求 要求 5.系统安全分析 a. 评估防冰系统的损失 不要求 要求 b. 确定系统故障是否造成危险 要求 要求 6.电磁干扰测试 要求 要求 7.流体储液器容量要求 不要求 要求(例如:150 分钟@ 正常流速)a.液量表 不要求 要求 8.螺旋桨推力不受结冰影响 不要求 要求 9.空气数据(皮托管、静态、AOA、失速警告) 不要求 要求 且其他系统在结冰情况下正常运行 10.结冰系统功能报警 不要求 要求 11.测试表明飞机具有足够的性能、稳定性、可控性、失速警告和失速特性,以应对预期的结冰。12.易受冰脱落损坏 不要求 要求 13.经认证可在冻毛毛雨或冻雨中飞行 无冻毛毛雨 无冻毛毛雨或冻雨 或冻雨
摘要 - 透明粒度可重构阵列(CGRA)是一种有前途的解决方案,可以使来自不同域的应用加速加速。通过利用功能级别的重新配置,它们可以适应显着不同的计算模式。但是,电压和频率与CGRA资源的利用及其动态管理的关系尚未很好地探索,从而导致设计效率低下。CGRA也成功地加速了数据依赖的流媒体应用程序。但是,在这些应用中,管道中每个内核的执行时间可能会根据输入的特性而动态变化。这也导致资源不足,用于动态变化的内核,而内核不会限制应用程序吞吐量。dvfs还可以通过动态更改主持非绩效构成内核的瓷砖的电压和频率水平来提高这些应用的能源效率。本文提出了ICED - 一项集成的DVFS感知框架 - 绘制支持电源岛的CGRA应用程序。ICED提出了一个CGRA架构,以不同的粒度(从单个瓷砖到一组瓷砖)以及相关的DVFS感知汇编和映射工具链,以不同的粒度(从单个瓷砖到一组瓷砖)为支持DVFS群岛。ICED是在电力岛级别引入对时空CGRA的DVF支持的第一部作品。实验评估表明,与常规CGRA相比,冰的平均利用率提高了2.3倍,能源效率提高了1.32倍。使用流应用程序,与最先进的CGRA相比,ICED可以达到高达1.26×能量效率,该最先进的CGRA引入了部分动态重新配置以适应内核吞吐量的变化。