GF 无麸质 NF 无坚果 DF 无乳制品 VG 纯素 V 素食 以上食品均采用无麸质食材制作。但是,我们的厨房并非完全不含麸质。如果您有食物过敏或敏感,请告知我们。 *这些食品可能是现点现做的,可能含有生的或未煮熟的食材。食用生的或未煮熟的肉类、家禽、海鲜、贝类或鸡蛋可能会增加您患上食源性疾病的风险
摘要:已经提出了多种机制来解释次级冰的产生(SIP),并且已经认可SIP在形成云冰晶体中起着至关重要的作用。但是,大多数天气和气候模型都不考虑其云微物理方案中的SIP。在这项研究中,除了默认的rime分裂(RS)过程外,将超冷的雨/细雨滴(DS)和冰上的分解 - 冰碰撞 - 冰碰撞(BR)的两种SIP过程,即粉碎/碎片化。此外,还引入了两个不同的参数化方案。进行了一系列的灵敏度实验,以研究在欧洲中部开发的基于温暖的深对流云中,SIP如何影响云微物理学和云相位分布。仿真结果表明,云微物理特性受到SIP过程的显着影响。冰晶数浓度(ICNC)增加了20倍以上,并且考虑到SIP过程,表面沉淀降低了20%。有趣的是,发现BR占主导地位,并且BR过程速率分别大于RS和DS过程速率,分别为四个和三个数量级。在实现所有三个SIP过程时,云中的液体像素数馏分在云层内部和云顶部下降,但降低取决于BR方案。模拟深度对流云中冰的增强面(IEF)的峰值为10 2-10 4,并在2 24 8 c处位于所有三个SIP过程,而IEF的温度依赖性对BR方案敏感。但是,如果仅包括RS或RS和DS操作,则IEF是可比的,峰值为6个,位于2 7 8 C,此外,关闭CASCADE效应导致ICNC和冰晶体混合率显着降低。
冰结构的关键在于,在某种条件下,氢键是否以可控的方式集体断裂,即一系列氢键沿一个方向断裂,例如沿图 1 所示的虚线。如果氢键从中心沿六个方向集体断裂,则预计冰将断裂成六块,每块与中心成 60 度角。从机械工程的角度来看,冰应该从任何一点开始具有各向异性。冰的这种机械特性尚未被研究过。在这篇简短的报告中,我们证明,薄冰在接触点受到冲击/撞击时确实会断裂。冰以预期的角度断裂成六块。这可能是第一个例子直接观察到氢键沿预期方向以可控的方式集体断裂。
2020 年 1 月,国际行星科学界齐聚伦敦,共同致力于实现首个专用机器人任务,探测遥远的冰巨星天王星和海王星,这是太阳系中唯一尚未被全面探索的主要行星类型。冰巨星大小的星球似乎是行星形成过程的常见结果,并且对我们理解奇异的富含水的行星内部、动态和寒冷的大气层、复杂的磁层结构、富含地质的冰卫星(天然和捕获的)和精致的行星环提出了独特而极端的考验。本文介绍了 2020 年代初冰巨星系统探索的特刊。我们回顾了未来几十年雄心勃勃的国际伙伴关系在探索天王星和/或海王星方面的科学潜力和现有的任务设计概念。
冰类型和大小 备注 内布拉斯加州庞卡州立公园 (Ponca State Park) 752.0 NR 爱荷华州苏城 (Sioux City),IDOT 732.0 1 月 7 日 0810 20 80 2-12 英尺冰盘 大量雪泥冰 IPS 爱荷华州苏城 (Sioux City) 718.4 1 月 7 日 0810 20 80 2-12 英尺冰盘 内布拉斯加州迪凯特 (Decatur) 691.0 NR 爱荷华州布伦科 (Blencoe),IA 680.0 内布拉斯加州布莱尔 (Blair) 1 月 7 日 0815 20 80 4-10 英尺冰盘 内布拉斯加州布莱尔 (Blair) WWTP 1 月 7 日 0820 20 80 2-12 英尺冰盘 Mo R Proj Office,内布拉斯加州 627.0 1 月 7 日 0820 20 80 2-12 英尺冰盘爱荷华州 Bluffs 606.0 1 月 7 日 0830 10 90 2-12 英尺平底锅 内布拉斯加州 Plattsmouth Bridge 591.5 内布拉斯加州 Nebraska City, NE, NDOR 556.3 1 月 7 日 0820 50 50 2-12 英尺平底锅 内布拉斯加州 Cooper Nuclear 532.6 1 月 7 日 0820 50 50 2-12 英尺平底锅 内布拉斯加州 Camp Rulo 498.0 密苏里州 Parkville 377.5 密苏里州 Kansas City 370.5 密苏里州 Kansas City 365.6 密苏里州 Napoleon 328.7 密苏里州 Waverly 293.5 密苏里州 Glasgow 226.3 密苏里州 Jefferson City 143.9 密苏里州 Hermann 97.9 密苏里州 St. Louis 37.1 NR = 未报告
边缘冰区(MIZ)是海冰和开阔海洋之间的过渡区,这是一个强大,复杂的相互作用和海洋,海冰和大气之间的反馈区域,对数值建模和进行观察的挑战(Dumont,2022; 2022; Horvat,2022)。近年来,人们对MIZ过程的兴趣日益增加,以越来越多的原位,基于卫星和实验室观察性运动以及理论和数值研究表现出来。由于物理学家,数学家,海洋学家,数字建模者等的跨学科努力,进展是实质性和多向的。MIZ系统的关键组成部分,通常被视为其定义特征之一,是海冰 - 波浪相互作用。他们已经研究了很多年(Squire,2018年,2020年; Shen,2022; Thomson,2022),但大多数研究都集中在涉及现象的狭窄子集上。
摘要:对三方共生中豆类根际的这项研究的研究重点是共生体之间的关系,而较少的整体根际微生物组。,我们使用了一种实验模型,该模型与AM真菌接种(根瘤菌异常和AM物种混合)的不同花园豌豆基因型来研究它们对土壤微生物主要营养基团的人群水平以及根茎微生物群落中的结构和功能关系的影响。实验是在植物的两个物候周期上进行的。分析:微生物种群密度定义为CUF/G A.D.S.和AMF(%)的根定植率。 我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。 我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。 我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。 微生物群落中营养基团之间保存的比例表明结构和功能稳定性。和AMF(%)的根定植率。我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。微生物群落中营养基团之间保存的比例表明结构和功能稳定性。
在农业的可持续发展中,微生物与植物之间的相互作用显而易见。微生物参与植物系统中的各种代谢活动,进而有助于植物健康的改善。最终,植物 - 微生物相互作用与生物地球化学周期有关。在这种情况下,宏基因组研究有助于我们调查其自然壁ni的微生物多样性,尤其是在根际区域中。明显地,一组种类繁多的细菌,真菌和古细菌可能参与植物生长促进(PGP)活动。根际微生物群落的变化取决于各种参数,例如土壤有机物,植物基因型,植物渗出液,作物旋转,土壤P H,养分循环等。一些非生物因素和化肥对农作物生产力产生负面影响,从而影响了环境的可持续发展。尽管气候变化产生了负面影响,但微生物应对这种改变的情况,并试图通过营养获得和压力耐受性方法成功地调整自己,从而促进植物的生长。因此,气候变化似乎是最近对农业部门的巨大威胁,这在不久的将来可能会持续存在。然而,根际区域中微生物多样性的保护似乎是长期环境可持续性的最有希望的选择之一。
•预计2024年至2028年之间每年的全球平均近表面温度预计将比1850-1900年的平均水平高1.1°C至1.9°C。•可能(80%的机会),在2024年至2028年之间,全球平均平均近表面温度将超过1850-1900的平均水平1.5°C。五年平均值将超过此阈值大约不是(47%)。•2024年至2028年之间至少一年可能比记录中最温暖的一年(目前2023年)要温暖一年。2024年至2028年的五年平均机会比最近五年(2019-2023)高(90%)。•2023-24厄尔尼诺尼诺已经达到顶峰,并且很可能在2024年过渡到LaNiña。•相对于1991 - 2020年期间的平均水平,在接下来的五个延长冬季(11月至3月)的北极变暖预计将大于全球平均温度的变暖大三倍。•相对于1991 - 2020年平均值,预测2024年的降水模式表明,巴西东北部降雨的机会增加增加,而非洲萨赫勒(Sahel)的潮湿条件的机会增加,这与北大西洋地区的较温暖的温度一致。•7月至9月季节的苏达诺 - 撒哈利亚人(Presass)地区可能会看到2024-2028的平均降雨量,尽管个人季节可能并非如此。•2024 - 2028年5月至9月的北大西洋预测条件表明,热带气旋活性高于平均水平。•2024 - 2028年3月的海冰预测表明,巴伦支海,白令海和俄克拉斯大海的海冰浓度进一步降低。
2:斯坦福大学,斯坦福大学,加利福尼亚州94305,根际,植物根,微生物及其周围土壤基质之间的界面是一个动态且复杂的系统,对于陆生生态系统的运作至关重要。根际最重要的功能之一是其在调节地球和空气之间的碳循环中的作用。在全球范围内,根际释放植物根和土壤微生物的联合活性比化石燃料燃烧的排放量估计比二氧化碳估计要多3-10倍,但在正确的条件下,土壤有机碳(SOC)可以夹在土壤聚集物中,因此不会释放回大气层。矛盾的是,根部有助于SOC的稳定和不稳定。根际过程具有增强和破坏长期持久SOC的有趣能力,其估计全球碳固化潜力每年为5.3千兆二氧化碳二氧化碳。这项研究通过了解植物根部如何影响SOC积累以及通过根,微生物和土壤结构的作用来调节碳负面的核心大地的核心使命。一种可能的途径是根驱动的土壤骨料周转率,其中包括诸如根部渗透,干燥剥离循环以及有机化合物与粘土矿物质的过程。该途径在SOC稳定和不稳定中起着重要作用。另一个可能的途径是渗出型微生物周转率,涉及植物渗出液助长的微生物活性。该途径影响底物利用效率和含有碳的死灵物的埋葬,这两者都对SOC动力学有影响。这项研究的目标是通过使用新型的高空间分辨率正电子发射断层扫描(PET)和计算机断层扫描来量化碳过程,并了解根际途径,以对未经扰动的样品量的动态数据收集,既可以在根表面和远离土壤表面。传统的静态PET成像产生了碳辐射量的时间平均,空间分布,可以估算其在土壤聚集体中的积累和其他感兴趣的根茎体积。然而,仅静态成像在捕获生物过程的动态性质时就缺乏,无法解释碳稳定的机制。相比之下,动态成像既提供了放射性示意剂的分布,也提供了放射性示例的时间变化,因为碳在稳定和不稳定形式之间移动。,最重要的是,顺序动态宠物框架实现了高度定量的技术来映射和量化放射性示波器的分布,传输,代谢,结合等。生理过程的运动学建模是碳辐射型动态成像的关键优势。将直接观察结果与各种同位素示踪剂(例如碳 -11标记的二氧化碳,碳-13标记的二氧化碳碳二氧化碳和碳-14标记的二氧化碳碳二氧化碳)揭示的途径和相关根茎机制的标记。这项研究是由生物和环境研究办公室选择的。同时量化了相互连接的土壤基质和微生物离职途径中的SOC稳定和不稳定速率,将以先前无法实现的方式促进研究,并为改善策略提供有价值的见解,以增强土壤碳序列化。此外,这些发现与全球土壤碳建模工作保持直接相关性,并有潜力解决根际悖论以及现有模型中有充分记录的不确定性和不一致的情况。_____________________________________________________________________________________
