用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – J.L.Arnaud 2 – J.A.Quiroga 3 1 无损检测专家,2 空中客车法国,3 马德里大学 摘要:在飞机制造/组装过程中,或交付后使用中,机身外侧可能会出现表面损伤。与飞机尺寸相比,大多数缺陷都很小,通常分布在机身的整个表面上。为了正确表征此类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于这种缺陷,光学技术通常能提供良好的解决方案。然后,开发了基于光学的新技术,以满足飞机制造商在损伤表征方面的要求。特别是,开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员进行缺陷分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际当局都要求制造商、航空公司和维护组织严格遵守有关飞机安全和保障的现行法规。飞机结构在服役期间承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期控制部件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外控制以确保其完整性以便继续使用。复杂性的增加以及用于增强机械性能和减轻结构重量的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效、更快、更准确、更自动化,并且在人为解释方面更具限制性。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度方面损坏的严重性。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或脱粘。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制器必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械性能,当凹痕几何形状足够关键以运行此类程序时。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是为了补充目前使用的机械手段(深度计、粗糙度计……)。对该工具的基本要求是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面或平台或发动机舱进行测量。此后,他们应该能够在难以接近的区域携带该工具。考虑到飞机的整个表面,与相对较小的凹痕尺寸相比,凹痕可能很多并且遍布整个飞机,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具应足够准确。
纤维增强聚合物 (FRP) 复合材料层压板具有优异的强度、刚度和设计灵活性,被广泛应用于航空航天和工程领域。然而,FRP 层压板易受低速冲击损伤 [1]。冲击事件通常会造成内部损伤,而外部损伤迹象却很小,这也称为几乎看不见的冲击损伤 (BVID)。这种隐藏损伤对层压板性能的影响可能非常显著,特别是在压缩状态下,强度可能降低高达 50% [2]。因此,有必要定期进行无损检测或实施结构健康监测 (SHM) 系统来检测损伤的存在并防止结构发生灾难性故障 [3]。因此,在设计中纳入了大量安全因素以确保其安全性和可靠性,从而使复合材料结构重量更重、截面更厚。传统上,一旦在复合材料结构中检测到损伤,就会设计并进行临时或结构修复。这些问题的另一种解决方案是应用自修复 FRP 复合材料。自修复可以减轻撞击事件造成的损害,从而有机会改善 FRP 的设计容许值或提供其他好处,如减少维护和检查时间[4]。20 世纪 80 年代初,Wool 和 O'Conner 在裂纹修复的背景下探索了聚合物中修复材料的概念[5]。这项初步工作重点是了解如何使用溶剂焊接方法修复或修复裂纹。在这项研究中,Wool 和 O'Conner
陶瓷复合材料 (CC) 是不同相的混合物,其发展通常被视为技术进步的里程碑。它们几乎用于所有重要行业。CC 经常会受到可变的动态载荷、冲击或高温 [1-3]。本文分析了由 Al2O3/ZrO2 制成的薄板的冲击。这些板材由上述 CC 制成,其成分比例不同。使用近场动力学分析损伤进展,类似于准静态拉伸 [4]。本研究的目的是描述 CC 板中的冲击损伤发展并确定相含量的作用。研究发现,测试的 CC 中的相对比例对板的行为至关重要。总之,可以说所采用的近场动力学方法适合解决所研究的问题,并且应将冲击板视为真实的三维结构。
分层 1. 分层主要是由于冲击损伤或制造不良引起的 [3, 23-25]。 2. CFRP 复合材料层合板的抗分层性较低 [26]。 3. 分层会降低复合材料的抗压强度,因为分层很容易使板层发生平面外位移 [27]。 这可能直接导致由于弯曲或锥形几何形状而导致的全厚度失效,或由于裂纹、层片脱落或自由边缘而导致的不连续性 [23]。 4. 分层可能导致横向基体裂纹连接并产生断裂面,从而导致结构失效,在纤维不断裂的情况下卸下载荷 [23]。 它还可能导致 CFRP 层合板的刚度和强度显著降低,并降低 CFRP 的结构可靠性 [10]。
热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
14 个月前 OBDURATE 正在护送前往俄罗斯的护航队,时速 11 海里。9 时,在右舷约 20 英尺处与后鱼雷发射管并列的位置发生了严重的水下爆炸« 爆炸使右舷大厅板在框架 9 纵梁和纵梁之间凹陷,与发动机室和齿轮室并列« 上层和下层甲板以及后油箱附近的舱壁弯曲和拉紧« 发动机室和齿轮室的轻微洪水以及后油箱到齿轮室的泄漏得到控制,右舷立柱块和压盖空间以及轴管充满了燃油« 所有右舷 H0 P 0 涡轮机脚和 L«P« 涡轮机的后脚断裂,齿轮箱也开裂。辅助机械受到冲击损坏,导致右舷主循环器和辅助循环器以及 10 Kwc 辅助发电机停止运行« 右舷立柱块变形,损坏后,左舷主发动机产生振动。电气设备受到轻微不重要的冲击损伤« 两个双联 0o5 英寸机枪支架均发生变形«
摘要 碳复合材料因其特殊性能而应用于各个行业,尤其是航空航天工业。广泛使用的碳纤维增强聚合物 (CFRP) 甚至已应用于飞机主要结构。开发能够轻松检测和识别碳纤维材料退化的先进诊断技术仍然是各种无损检测方法面临的挑战。本文介绍了应用涡流 (EC) 检测碳复合材料结构的可能性。开发并测试了两种类型的涡流探头,并获得了优异的结果。新的传统涡流探头能够可靠且轻松地检测表面和地下不连续性,例如分层和厚度变化。针对不同类型的碳复合材料(基质和增强材料类型、铺层)描述了探头设置参数。精确的设置对于成功的涡流检测必不可少。经确定,对于样品,可靠检测的最小表面缺陷尺寸为 Ø1.5 mm,并且根据碳复合材料的类型,涡流能够穿透厚度高达约 4 mm。此外,本文还介绍了涡流检测与超声相控阵法 (PAUT) 的比较。复合材料飞机结构很容易受到通常使用 PAUT 检测的冲击损伤。因此,冲击数据的灵敏度和分辨率分析
本文介绍了一种经济有效的方法来改善碳纤维增强聚合物 (CFRP) 预浸料复合材料的物理和机械性能,其中合成电纺多壁碳纳米管 (MWCNT)/环氧纳米纤维并将其加入到传统 CFRP 预浸料复合材料的层之间。通过优化的电纺丝工艺成功生产出 MWCNT 取向环氧纳米纤维。纳米纤维直接沉积在预浸料层上以实现改善的粘附性和界面结合,从而增加强度并改善其他机械性能。因此,高应力状态下的层间剪切强度 (ILSS) 和疲劳性能分别提高了 29% 和 27%。几乎看不见的冲击损伤 (BVID) 能量显著增加,最高可达 45%。由于 CFRP 层之间存在高导电性的 MWCNT 网络,热导率和电导率也显著提高。所提出的方法能够在预浸料的层间界面处均匀沉积高含量的 MWCNT,以增强/提高 CFRP 性能,这在以前是无法实现的,因为环氧体系中随机取向的 MWCNT 会导致树脂粘度高。
第 1 部分(第 1-23 章)涵盖了各种分析主题。解决方案很简单,没有复杂的数学表达式。这与典型的工程分析一致。此外,复杂的数学表达式不一定能提高准确性,可能会错误地暗示纯分析解决方案适用于复合材料。实用的复合材料分析方法(尤其是与强度预测相关的方法)通常是半经验性的,需要特定的测试数据来开发经过验证的分析方法;复合材料必须考虑缺口敏感性、冲击损伤、可修复性等。付出了相当大的努力来解释为什么实际方法有时不同于学术解决方案的原因;还讨论了纯分析方法的缺点。相比之下,金属的学术解决方案往往能很好地延续到实际方法中。机械性能(其中许多是复合材料所独有的)也在第 1 部分中进行了讨论:了解这些性能对于用于飞机结构的复合层压板的分析至关重要。还包括复合层压板及其使用结构的设计考虑因素。对于典型结构,尽可能使用标准设计实践非常重要,因为复合材料具有多种故障模式,当设计超出典型设计空间时,其中一些故障模式比金属更难预测(也更难容忍)。
第 1 部分(第 1-23 章)涵盖了各种分析主题。解决方案简单明了,没有复杂的数学表达式。这与典型的工程分析一致。此外,复杂的数学表达式不一定能提高准确性,可能会错误地暗示纯分析解决方案适用于复合材料。实用的复合材料分析方法(尤其是与强度预测相关的方法)通常是半经验的,需要特定的测试数据来开发经过验证的分析方法;复合材料必须考虑缺口敏感性、冲击损伤、可修复性等。本文付出了相当大的努力来解释为什么实际方法有时不同于学术解决方案;还讨论了纯分析方法的缺点。相比之下,金属的学术解决方案往往可以很好地延续到实际方法中。第 1 部分还讨论了复合材料独有的机械性能:了解这些性能对于用于飞机结构的复合层压板的分析至关重要。还包括复合层压板及其使用结构的设计考虑因素。对于典型结构,尽可能使用标准设计实践非常重要,因为复合材料具有多种故障模式,当设计超出典型设计空间时,其中一些故障模式比金属更难预测(且更难处理)。