sirtuin 6(SIRT6)是一种多面蛋白脱乙酰基酶/脱酰基酶,也是小分子寿命和癌症的主要靶标。在染色质的背景下,SIRT6在核小体中去除组蛋白H3的乙酰基,但是其核小体底物偏好的分子基础尚不清楚。我们的冷冻 - 与核小体复合体中人类SIRT6的电子显微镜结构表明,SIRT6的催化结构域从核小体入门位点pries DNA pries DNA,并通过使用呼吸酶锚固的组蛋白酸性贴剂结合了组蛋白H3 N末端螺旋,而SIRT6 Zinc Zinc结合域则与SIRT6 Zinc 6 Zinc结合域结合。此外,SIRT6与组蛋白H2A的C末端尾巴形成抑制作用。该结构提供了有关SIRT6如何脱乙酰化H3 K9和H3 K56的见解。
仅出于一般信息和教育目的提供了本文档中包含的信息,材料和任何意见,不打算构成法律或其他专业建议,也不应依靠或视为替代与特定情况相关的特定建议。尽管我们会做出所有合理的效果以确保信息是最新的,但我们在这方面没有任何陈述,保证或担保。在任何情况下,创建者均不对与文档内容或其任何部分有关的任何直接,间接,特殊,结果或其他损害均承担任何责任。
ryanodine受体(RYRS)是负责从肌质和内质网释放的细胞内四聚离子通道。在三种已知的哺乳动物RYR同工型中,RYR1对于肌肉收缩至关重要,并且已被广泛研究。RYRS的细胞质暴露多域碎片整合了多个细胞信号,这些信号调节通道门控和与Ryrs生理开放概率的小偏差导致危及生命的疾病。冷冻EM在揭示RYR门控机制的近原子细节方面发挥了作用,但在冷冻EM条件下RYR1的开放概率明显低于电生理研究中观察到的,这使RYR1门控模型的结构研究变得复杂。在这里,我们提出了一项冷冻EM研究,研究了在脂质浓度不同的CHAP中溶解的RyR1的开放概率。我们发现,将脂质浓度从0.001%增加到0.05%,将RYR1开放概率从16升至84%。但是,RYR1重组为脂质纳米盘仍关闭。我们在以最高脂质浓度重建的地图中建模了72个脂质分子。这些发现表明,脂质在冷冻EM条件下调节RYR1门控的关键作用,并提出了RYRR1门控调制的结构研究的最佳脂质模拟物。
阿尔茨海默氏病(AD)的特征是淀粉样蛋白β(Aβ)斑块和神经纤维缠结(NFTS)的进行性认可,这是AD发病机理的核心。神经薄缠结由tau蛋白纤维多孔组成,尤其是配对的螺旋纤维(PHFS)和直纤维(SFS)。在AD脑1-6的皮质提取中,它们的相对丰度先前已被描述为约90%的PHF和10%SF。具有β和tau配体的正电子发射断层扫描(PET)成像增强了对AD进展的诊断准确性和理解7。第一代tau-pet配体能够在体内检测tau缠结,并具有预测性的脑萎缩和认知能力下降的能力8 - 14。在此基础上,已经开发了第二代tau-pet配体,以改善特异性,药代动力学和亲和力。这些配体基于优化的化学结构,例如吡啶吲哚,苯基苯基苯基苯并苯二唑和喹啉/苯二唑唑衍生物15 - 17。特定于[18 f] MK-6240(如[18 f] MK-6240)(如[18 f] MK-6240)的吡咯吡啶基胺衍生物与第一代示踪剂相比,与Tau Tangles的结合优越。第二代tau-pet配体的发展,例如[18 F] MK-6240,对于早期AD检测,疾病分期和治疗干预评估至关重要。18 - 23。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
该材料受美国版权法和国际条约的保护。禁止未经授权使用该材料。在未经Bionano基因组学书面书面的明确许可的情况下,以任何形式或任何媒体,无论是现在已知还是未知的方式,都不得复制,复制,分发,翻译,反向工程或以任何形式或以任何方式传播。根据法律复制,包括转化为另一种语言或格式。本文包含的技术数据旨在用于美国法律允许的最终目的地。与美国法律相反的转移。此出版物代表发布时可用的最新信息。由于持续改进产品的努力,可能会发生技术变化,而这些文档不会反映出本文档。Bionano基因组学保留在任何时间和事先通知的情况下对本出版物中包含的规格和其他信息进行更改的权利。请联系Bionano Genomics客户支持以获取最新信息。
SmartPack(正在申请专利)热交换器采用极其坚固的一体式铝制设计,没有互连管。SmartPack 具有业内最低的压降、显著的节能效果并保证露点。宽大的空气通道可降低空气速度,超大的慢流除雾器即使在部分空气流动时也能提供完美的冷凝水分离,气流内的露点传感器可改善控制,从而确保最佳露点性能。宽大的空气对空气部分和热屏蔽绝缘 (TSI) 有助于降低功耗。
该方案概述了干细胞衍生神经祖细胞的冷冻保存程序。它可用于在液氮罐中分化的第13天或第17天的腹中脑中脑多巴胺神经元祖细胞的冷冻保存和长期存储。
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
1加利福尼亚大学旧金山分校的生物工程和治疗科学系,加利福尼亚州旧金山,美国2结构生物学计划,CUNY高级科学研究中心,纽约,纽约,纽约,10031 3博士。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。 120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。生物学计划,研究生中心 - 纽约市纽约市,纽约,纽约10016 4 Atomwise,Inc。,旧金山,加利福尼亚州,美国加利福尼亚州,美国5化学和生物化学系,纽约市城市学院,纽约,纽约,纽约,10031年,10031年10031 6 Ph.D.生物化学,生物学和化学方案,研究生中心 - 纽约市城市大学,纽约,纽约10016†当前地址:重播,5555 Oberlin Drive,Ste。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。 传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。 然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。 为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。 但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。 为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。 Phenix,Refmac,Buster)。120,圣地亚哥,CA 92121 *通信:mullane.stephanie@gmail.com摘要:在其折叠状态下,在多种构象状态之间交换对其功能至关重要的构象状态。传统的结构生物学方法,例如X射线晶体学和低温电子显微镜(Cryo-EM),产生了集合平均值的密度图,反映了各种构象的分子。然而,大多数从这些地图得出的模型明确表示单个构象,从而忽略了生物分子结构的复杂性。为了准确反映生物分子形式的多样性,迫切需要朝着建模反映实验数据的结构合奏。但是,将信号与噪声区分开的挑战使手动创建这些模型的努力变得复杂。为了响应,我们将最新的增强功能引入了QFIT,这是一种自动化计算策略,旨在将蛋白质构象异质性纳入内置在密度图中的模型中。Phenix,Refmac,Buster)。这些QFIT中的这些算法改进是由跨蛋白质范围的上级和几何指标证实的。重要的是,与更复杂的多拷贝集合模型不同,可以在大多数主要的模型构建软件中手动修改QFIT生产的多构形式模型(例如,coot)和拟合度可以通过使用标准管道来进一步改善(例如通过减少创建多配量模型的障碍,QFIT可以促进有关大分子构象动力学和功能之间关系的新假设的发展。