近年来随着研究的深入,高导热复合材料多是通过构建三维网络结构来获得的。14,36制备三维CF骨架的常用方法有简单的共混法、37,38化学气相沉积法(CVD)、39电泳沉积法、40,41静电锁定法42-44和冷冻干燥取向法45,46然而在共混工艺和CVD作用下,CF细丝通常随机、无序地分布在前驱体基体中。具有无取向CF结构的复合材料不易实现连续的热传输路径。为了构建连续的导热网络结构,提高CF的取向度已被证明是一种有效的手段。13众所周知
壳聚糖是由114批量的Mahtani壳聚糖提供的,其乙酰化度(DA)为2%,由1 H NMR确定,质量平均摩尔质量(m w)为619 kg/mol,分散剂(ð)的分散剂(1.6),由尺寸 - 1.6,通过尺寸 - 散发性切除率确定。壳聚糖以1、2-丙二醇和ACOH(50/50 V/V)的水醇混合物中的0.5%(w/v)以0.5%(w/v)的形式进行乙酰基壳。在剧烈的机械搅拌下将壳聚糖(GLCN)单位的静态藻类添加到D-葡萄糖(GLCN)单元中,并混合18小时以达到靶向DA。然后将壳溶液通过纤维素膜过滤,孔径从3 µm降低至0.45 µm。乙酰化的壳聚糖最终用NH 4 OH沉淀,用去离子水洗涤并冷冻干燥。乙酰化的壳聚糖,DA为35%,M W的693 kDa和1.8的分散性。
我们在此报告中的近红外(NIR) - 发光蛋白质复合物与共轭聚合物。我们已经发现,NIR区域中的固态发光可以从由硼偶氮苯复合物组成的一系列共轭聚合物中获得。我们在本文中证明了蛋白质分子可以通过与含硼偶氮苯的共轭聚合物的吸附来修饰,仅通过在水缓冲液中混合并随后用过滤纯化,然后冷冻干燥。修饰的蛋白质复合物可以在缓冲液中表现出NIR发射和高色散性。特别是,与吲哚羟氨酸绿(ICG)相比,这是一种常规的衰老染料染料,聚合物修饰的蛋白质复合物显示出对光漂白的耐药性。最后,通过将脂肪酶用作支架,我们证实了在聚合物修饰后可以检测到酶促活性。关键字:共轭聚合物;近红外发光;唑苯;蛋白质复合物
药物纳米舒张,也称为纳米晶体,主要是由表面活性剂和/或聚合物稳定的不溶性药物颗粒的水分散体。纳米舒张作为液体配方不稳定。纳米悬浮液对固体剂型形式的固化是将纳米晶体优势与固态优势相结合的一种方式。在这篇综述中,有关纳米舒张的稳定和产生的进展被覆盖了。更新用于将纳米司张转换为固体口服剂型的方法(例如,粉末,颗粒,颗粒,片,片剂和电影)。从这些方法中,喷雾干燥和冷冻干燥被广泛使用。肉芽和热融化的挤压可以直接下游处理,同时打印具有剂量个性化的潜力。重点是新型配方(例如纳米晶体,纳米晶体固体分散体),这可以进一步增强可溶性溶解的药物的溶解和生物利用度。
我们报告了一种用于开发热稳定口服胰岛素片的新型配方方法。使用冷冻干燥在单步过程中形成热稳定的片剂,我们证明了使用胆汁盐Achieves Intestinal Achoives肠肠吸收和持续的格糖果水平,证明了羟丙基β环糊精(HP-β-CD)封装的胰岛素的亲脂性离子对配合物。使用这种简单方法生产的片剂只有两种赋形剂可保护酶促和胃酸降解并促进胰岛素的吸收,而无需使用专门的药物制造或肠涂层。这种创新配方中的胰岛素是热热剂,即使在30-40°C/65-75%RH的热应力下也能够保持稳定性。胰岛素作为热稳定口服片剂的方便表现提供了一种低成本的可伸缩制造方法,可简化任何情况下的存储,运输和分配的物流,包括冷藏可能有限或不可用的区域。
在肠道中,一个细菌社区通过将食物转化为营养,捍卫人体免受致病感染以及与免疫和神经系统的通信来影响人类健康。1 - 3个研究人员发现,一个平衡和多样化的社区是监管免疫反应的关键。4,5因此,可以使用益生菌补充剂递送细菌来调节肠道社区以产生生物治疗效果。6,7个细菌细胞可以冷冻干燥以增加其保质期,同时也形成可以掺入口服补充剂中的粉末。8,9虽然在自由干燥过程中使用的加工条件,低温和压力可能对细胞有害,但细菌在材料中的包封封装在诸如,蛋白质,碳水化合物或聚合物之类的材料中可保护细胞在加工过程中的损害。其他技术 - 喷雾干燥,乳液,微流体,3D打印,挤出等。- 也已被用来封装各种聚合物中的细菌,以改善在加工,存储和使用过程中的细胞活力。6,10 - 13
摘要:收获后干燥是保存农产品的重要程序,因为它可以延长保质期,减少收获后损失并保持食品质量。传统的干燥技术可能导致产品质量不一致和能源使用效率低下。人工智能 (AI) 与新型干燥技术(如折射窗口干燥、微波干燥、冷冻干燥和热风干燥)的结合为这些困难提供了可行的解决方案。本研究探讨了利用机器学习、深度学习和预测建模等人工智能方法来优化干燥参数、提高产品质量和最大限度地减少能源使用。本研究分析了实时监控和灵活监督的改进功能,人工智能驱动的模型可以根据产品属性预测理想的温度、湿度、气流和干燥时间。此外,人工智能在质量预测中的应用可以准确调节水分含量、颜色、质地和营养特性,从而生产出优质的干燥产品。本研究还解决了数据质量、模型可解释性、可扩展性和对各种干燥系统的适应性等挑战。本分析强调了增强人工智能在收获后干燥方面的潜在可能性,重点关注人工智能在农业领域促进可持续高效干燥方法的潜力。 关键词:人工智能、收获后干燥、质量优化、能源效率、机器学习、折射窗口干燥 1. 简介 1.1 收获后干燥 收获后干燥是农业中的一个重要过程,可以保持农作物、谷物、水果和蔬菜的质量和寿命。它可以降低水分含量,抑制细菌生长、变质和营养价值的流失。创新的收获后干燥技术,特别是折射窗口干燥 (RWD)、微波干燥、冷冻干燥和流化床干燥,因其保持营养和感官属性的能力而越来越受到认可[1]。这些方法旨在更快速、更节能、更环境可持续,与农业部门可持续实践的目标相一致。然而,干燥效率和功效经常会根据产品类型、气候条件和设备规格而变化,导致难以实现批次间质量的统一[2]。传统干燥技术包括日晒干燥、热风干燥和标准烤箱,由于其简单性和成本效益而广为使用[3]。然而,它们也存在其他问题,例如质量下降、能源效率低下以及干燥结果不一致。传统的干燥方法有时会使物品处于高温下,
等。已经发表了一种核苷磷酸化酶的可比方法(1)。所有程序均已验证,以与可用于组织化学目的获得的冷冻干燥材料一起使用。尽管总体上已经用作现有的甲基动物,但样本量的急剧减少需要进行大量改变。Fumarase方法是基于未发表的John Speck2博士的方法基于Mal-Ate的测量,并且可能具有普遍的兴趣。已经研究了Sibley和Lehninger(2)的藻酶方法,并提出了某些变化。整个组织中酶的定量测量将被扭曲。为了测试这种可能性,所研究的每种酶都从大脑中部分纯化,并恢复为粗脑匀浆。尚未对严重的抑制作用和刺激尚未得到应对,也许是因为在所有情况下以高组织稀释液测量了这些酶。这些证据当然不能排除酶不活跃形式或验证其他组织的方法的可能性。首先提出了这些方法的评论主要限制为事项
摘要:这项工作提出了一种适合益生菌细菌的新型干燥方法,称为闪光冷冻干燥(FFD),该方法包括在很短的时间内压力(上下)的环状变化,并在初级干燥期间应用。评估了三种FFD温度(-25℃,-15℃和-3°C)对乳酸乳杆菌LA5(LA)的细菌存活和水活性的影响,以前与藻酸盐和壳聚糖钙囊化。总过程时间为900分钟,比通常的2880分钟的通常冻干时间(FD)少68.75%。在FFD后,LA在-25°C下的LA达到了89.94%的细胞活力,比FD获得的细胞活力高2.74%,并且水活性为0.0522,该水活性比使用FD观察到的水活性明显低于55%。同样,这种冰点温度在存储结束时显示出64.72%的细胞活力(28天/20°C/34%的相对湿度)。使用实验数据,开发了一个有用的数学模型,以获得最佳的FFD工作参数,以实现最终干燥中的目标水分。
以下成分(以下称为“组织”)在每只鱼时被解剖:大脑,尾骨,背部肌肉,胆囊,g丝,性腺,心脏,心脏,肠,肝脏,肝脏和胃衬里。仅采样白色肌肉组织;将背部肌肉在背鳍插入底部的孔和通风口前的后方采样,然后将尾肌放在脂肪鳍后的后方,并在尾部的前面。在分析之前,将皮肤,骨骼和软骨从白色肌肉组织中去除。性腺被整体取样,并不区分为睾丸或卵巢,因为柳叶鱼大于100 cm是同时的雌雄同体(Bañon等人。2022)。胃被清空,用Milli-Q水冲洗以清除所有内容物。解剖后,将所有组织用Milli-Q轻轻冲洗,以避免样品之间的污染,放置在预先投资的旋风中,并在干燥之前和之后称重以测量水分含量。组织在-80°C中冷冻,然后在旋转式中进行冷冻干燥和匀浆或使用电子磨坊(IKA管磨机100控制)。铣削容器和工具在样品之间用95%的乙醇清洁。